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Abstract: Our recent study identified seven key microRNAs (miR-8066, 5197, 3611, 3934-3p, 1307-3p,
3691-3p, 1468-5p) similar between SARS-CoV-2 and the human genome, pointing at miR-related
mechanisms in viral entry and the regulatory effects on host immunity. To identify the putative
roles of these miRs in zoonosis, we assessed their conservation, compared with humans, in some
key wild and domestic animal carriers of zoonotic viruses, including bat, pangolin, pig, cow, rat,
and chicken. Out of the seven miRs under study, miR-3611 was the most strongly conserved across
all species; miR-5197 was the most conserved in pangolin, pig, cow, bat, and rat; miR-1307 was
most strongly conserved in pangolin, pig, cow, bat, and human; miR-3691-3p in pangolin, cow, and
human; miR-3934-3p in pig and cow, followed by pangolin and bat; miR-1468 was most conserved
in pangolin, pig, and bat; while miR-8066 was most conserved in pangolin and pig. In humans,
miR-3611 and miR-1307 were most conserved, while miR-8066, miR-5197, miR-3334-3p and miR-1468
were least conserved, compared with pangolin, pig, cow, and bat. Furthermore, we identified that
changes in the miR-5197 nucleotides between pangolin and human can generate three new miRs, with
differing tissue distribution in the brain, lung, intestines, lymph nodes, and muscle, and with different
downstream regulatory effects on KEGG pathways. This may be of considerable importance as miR-
5197 is localized in the spike protein transcript area of the SARS-CoV-2 genome. Our findings may
indicate roles for these miRs in viral–host co-evolution in zoonotic hosts, particularly highlighting
pangolin, bat, cow, and pig as putative zoonotic carriers, while highlighting the miRs’ roles in KEGG
pathways linked to viral pathogenicity and host responses in humans. This in silico study paves the
way for investigations into the roles of miRs in zoonotic disease.
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1. Introduction

The COVID-19 pandemic is caused by the severe acute respiratory syndrome coronavirus-
2 (SARS-CoV-2), a zoonotic virus, which belongs to the betacoronavirus family. While a num-
ber of zoonotic hosts have been suggested that may possibly not show disease symptoms [1],
SARS-CoV-2 causes significant pathogenicity in humans due to alterations in inflammation-
related pathways, including some resulting in exacerbated inflammatory responses, vascu-
lar responses, cutaneous manifestations [2], extensive lung pathology, cardiovascular and
cardiomyopathy [3–5], kidney damage [6,7], gastrointestinal involvement [8], as well as a
wide range of neurological conditions including stroke, encephalopathy, encephalitis, central
nervous system (CNS) vasculitis and acute neuropathies [9–11]. The SARS-CoV-2 genome con-
tains 14 open reading frames (ORFs), preceded by transcriptional regulatory sequences (TRSs),
while the two main transcriptional units, ORF1a and ORF1ab, encode replicase polyprotein 1a
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(PP1a) and polyprotein 1ab (PP1ab), respectively (Figure 1A). The largest polyprotein PP1ab
embeds non-structural proteins (NSP1-16), which form the complex replicase machinery. This
includes enzyme activities that are rare or absent in other families of positive-stranded (+)
RNA viruses. The viral genomes encode four structural proteins, called spike (S), envelope
(E), membrane (M), and nucleocapsid (N), and nine putative open reading frames (ORFs) for
accessory factors. Non-structural proteins (NSP1-16) control an array of functions for survival
for mature viruses. These vital functions include RNA-dependent polymerase (RDRp; NSP12),
mRNA capping (NSPs 14 and 16), and RNA proofreading (NSP14) [12–15].
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Figure 1. SARS-CoV-2 polycistronic genome. (A) The genome of SARS-CoV-2 organized in individual ORFs. (B) miR-
1468, 3691, 3611, 5197, 3934, 8066, and 1307 locations on the SARS-CoV-2 genome (S spike; E envelope; M membrane; N
nucleocapsid; NSP non-structural proteins; ORF Open reading frame).

microRNAs (miRs) are short non-coding RNAs that play multifaceted roles in gene
regulation, and also act as important regulators of the cellular antiviral response. Conse-
quently, viruses have been found to utilize the host’s nuclear RNA to evade the immune
response and exploit cellular machinery to their advantage by redirecting miRs to promote
their replication [16]. In the last decade, miRs have not only been investigated for their
diagnostic utility, but have already been applied therapeutically in different disease entities,
for example, infection with hepatitis C virus (HCV) or oncological diseases [17,18]. Fur-
thermore, miR-mediated vaccine studies showed that a number of miRs have the potential
to decrease viral replication with an extensive immune response [19]. As a proof of this
understanding, viral infections alter host miRs and can cause a dramatic change in host
responses [19]. The aspect of the miR-mediated regulation of viral infection is though
still an emerging topic, with relatively few studies so far, and therefore warrants further
exploration particularly also in relation to zoonotic diseases.

Recently, we reported seven key miRs in the SARS-CoV-2 genomes that relate to host–
pathogen interaction and viral pathogenicity, alongside a number of human comorbidities,
and their expression was verified in miRs that are expressed in lung biopsies of SARS-
CoV-2 patients and in in vitro cell models in the PRJNA615032 Bioproject trancriptome
data [20]. The seven identified miRs are spread on the SARS-CoV-2 genome, with three
miRs in ORF1a and four in ORF1b, whereof two are on the spike (S) protein, and two on
the nuclear (N) protein (Figure 1B).

Our previous study highlighted the roles of miRs in relation to SARS-CoV-2 infection
and the multifaceted symptoms associated with COVID-19 [20]. While the spread of SARS-
CoV-2 from zoonotic hosts to humans has received considerable attention, investigations
into the role of miRs have hitherto been limited. Zoonotic carriers suggested for SARS-CoV-
2 have ranged from pangolins, bats, snakes and hedgehogs, to domestic animals such as
pigs, ferrets, non-human primates as well as cats and dogs, while it is still unclear whether
there is one or several carriers, and also whether the virus can jump species without the
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animals showing significant symptoms of illness [21]. In the vein of virus–host coevolution
strategies [22,23], viruses would benefit from being in asymptomatic carriers for their own
survival, but when they jump to a species which is unfamiliar with the pathogen, the
new host may react with severe or unexpected immune and other host responses to the
emerging pathogen, as seen for COVID-19 in humans.

In the current study, we hypothesize that miRs may play important roles in zoonosis,
also forming part of virus–host coevolution. Therefore, we assessed the seven key miRs
(miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p) previously identified by our
group in the SARS-CoV-2 genome, in some of the main wild and domestic zoonotic species
reported for human viruses, including suspected carriers for SARS-CoV-2, namely bat and
pangolin, as well as cow, pig, chicken, and rat.

Our findings reveal differences in miR conservation between the different suspected
zoonotic carriers compared with humans, indicating possible roles for these miRs in
viral–host coevolution, particularly highlighting pangolin, bat, cow, and pig as putative
zoonotic carriers. This is further supported by KEGG analysis of viral and pathogenic
pathways linked to these miRs in humans, with particular focus on the spike associated miR-
5197, which, through nucleotide differences between pangolin and human, can cause the
generation of three new miRs. These display tissue specificity to brain, lung, intestine and
lymph nodes, respectively, and differ in KEGG pathway regulation, possibly contributing
to the adverse reaction to SARS-CoV-2 observed in the human host.

2. Materials and Methods
2.1. Genome Sequences

Genome sequences obtained from NCBI for pangolin (Manis pentadactyla; KN008488.1),
pig (Sus scrofa; NC_010453.5), cow (Bos taurus; NC_037353.1), horseshoe bat (Rhinolophus
ferrumequinum CM014239.1), rat (Rattus norvegicus; NC_005101.4), chicken (Gallus gallus;
NC_006089.5) and human (Homo sapiens; NC_000004.12) were searched for similarities with
the following 7 miRs: miR-8066, 5197, 3611, 3934-3p, 1307-3p, 3691-3p, 1468-5p, previously
identified in the SARS-CoV-2 genome [20]. Sequence alignment was carried out using
a genome-searching tool within BLASTN at NCBI. Full genome alignment of RaTG13
and SARS-CoV-2 (Wuhan-1 EPI_ISL_402125) was achieved using Clustal Omega [24] at
EBI (https://www.ebi.ac.uk/Tools/msa/clustalo/).

2.2. Potential miR Expression and Link Analysis

The expression levels of miRs in target cells were determined by IMOTA (Interactive
Multi-Omics-Tissue Atlas) [25], TissueAtlas [26], and TISSUES [27]. miRTargetLink for
human [28] was used to analyze the potential link between miRs. Prediction of the RNA
secondary structure in both wild type and mutated sequences for miR-5197 was analyzed
by using the RNAfold database [29]. Minimum free energy (MFE) structures [30] and
centroid structures [31] were calculated by the RNAfold [29].

2.3. Protein–Protein Network Interaction Analysis for miR Target Proteins

Search tool for the retrieval of interacting genes/proteins (STRING) analysis (https:
//string-db.org/) was performed on target proteins identified to be regulated by the seven
miRs under study. The protein IDs were submitted and analyzed for Gene Ontology
(GO) and Reactome pathways. The following parameters were applied in STRING: the
functions selected were “search protein by the name”, and the chosen species database
was “Homo sapiens”. Network analysis was further carried out by applying “basic set-
tings” and “medium confidence”. Nodes are connected by differently colored connecting
lines, which represent interactions for the network edges, based on evidence as follows:
“known interactions”, which are based on experimentally determined interactions or cu-
rated databases; and “predicted interactions”, which are based on co-expression, protein
homology, gene fusion, gene co-occurrence or gene neighborhood, or are established by
text mining. Significant levels were considered as p ≤ 0.05.

https://www.ebi.ac.uk/Tools/msa/clustalo/
https://string-db.org/
https://string-db.org/
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3. Results
3.1. Conservation of Seven SARS-CoV-2 miRs Across Zoonotic Species and Human

To identify the putative conservation of our previously identified miR signature across
taxa, we assessed the seven miRs in their potential source hosts, as well as in putative
intermediate domestic hosts. Out of the seven miRs, miR-3611 was most strongly conserved
across all species assessed; miR-5197 was most conserved in pangolin, pig, cow, bat, and rat;
miR-1307 was most strongly conserved in pangolin, pig, cow, bat, and human; miR-3934-3p
was most conserved in pig and cow, followed by pangolin and bat; miR-1468 was most
conserved in pangolin, pig, and bat, while miR-8066 was most conserved in pangolin and
pig. In human, miR-3611 and miR-1307 were most conserved, while miR-8066, miR-5197,
miR-3334-3p and miR-1468 were least conserved, compared with pangolin, pig, cow, and
bat (Figure 2).
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Figure 2. Conservation of seven SARS-CoV-2 miRs between pangolin, pig, cow, bat, rat, chicken, and human. The
conservation between the seven SARS-CoV-2 miR sequences, compared with the putative zoonotic species under study and
humans. Color-coding is by E-value (sequences are provided as a Supplementary Table S1).

3.2. Genomic Sequence Analysis

Using genomic sequence analysis, a high similarity was seen for the seven SARS-CoV-2
miR sequences in both bat and human as hosts (Table 1).

While miR-5197 was conserved between bat and pangolin, it nonetheless showed
higher similarity between human and bat (Table 1). Therefore, miR-5197 was further
analyzed with respect to IMOTA presentation of specific genes affected by miR-5197 in a
tissue-specific manner (Figure 3B), and was also assessed for tissue-specific distribution
(Figure 3C). Importantly, a small change in the miR-5197 sequence in pangolin causes
the predicted generation of three new miRs (miR-3529-5p, miR-7-1-3p and miR-548az-5p),
which affect different KEGG signaling pathways (Figure 4). Any such change in new miR
generation was not predicted for the other six miRs under study.
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Table 1. Comparison of previously identified human miR sequences [20] in SARS-CoV-2 (human) with pangolin and bat coronaviruses. Segments extracted from multiple sequence alignment of
complete viral genomes. Human miR sequences are identified in red; sequence differences in the other species are in green. GC content (%) and animal body temperature are also included in the table.

miR miR Sequence Alignment GC Content(%) Body Temperature (◦C)

8066
ATATGGGTTGCAAATGAGGGAGCCTTGAATACACCTAAAGATCACATTGGCACCCGAAA 28677 Pangolin 31 32

ATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAAT 28723 Human 37.5 37
ATATGGGTTGCAACTGAGGGAGCCTTGAATACACCAAAAGATCACATTGGCACCCGCAAT 28689 Bat 37.5 39–42

5197
CGACTCTTGACAACACATCACAGTCACTTTTGATAGTTAACAACGCAACTAATGTTATCA 21922 Pangolin 40 32
CTACTTTAGATTCGAAGACCCAGTCCCTACTTATTGTTAATAACGCTACTAATGTTGTTA 21944 Human 48 37
CTACCTTAGATTCGAAGACCCAGTCTCTACTTATTGTTAATAACGCTACTAATGTTGTTA 21926 Bat 43 39–42

3611
CAAGAGCGCTTTTTACATACTACCATCCATTGTCTCTAATGAGAAAGAAGAAATTCTTGG 4350 Pangolin 25 32
TAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGG 4371 Human 31 37
TAAAAGTGCCTTTTACATTCTACCATCTATTATCTCTAATGAGAAGCAAGAAATTCTTGG 4353 Bat 31 39–42

3934
GACCCCATGCCTAATAAT———GGCTGGACAGTCTTTTCAGCTGCTTATTACGTG 22329 Pangolin 32

TATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTG 22363 Human 42 37
TATTTGACTCCTGGTGATTCTTCTTCAGGTTGGACAGCTGGTGCTGCAGCTTATTATGTG 22345 Bat 42 39–42

1468
ACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGG 360 Pangolin 42 32
ACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGG 360 Human 42 37
ACACGTCCAACTCAGTTTGCCTGTCTTACAGGTTCGCGACGTGCTCGTACGTGGCTTTGG 345 Bat 50 39–42

1307
TGTGTAACATTAGGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGT 29702 Pangolin 76 32
TGTGTAACATTAGGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGT 29748 Human 76 37
TGTGTAACATTAGGGAGGACTTGAAAGAGCCACCACATTTTCACCGAGGCCACGCGGAGT 29714 Bat 76 39–42

3691
GAGATGTTGATACAGACTTTGTGAATGAGTTTTATGCATATTTGCGTAAACACTTCTCAA 15682 Pangolin 36 32
GAGATGTTGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAA 15703 Human 41 37
GAGATGTTGACACAGACTTTGTGAATGAGTTTTACGCATATTTGCGTAAACATTTCTCAA 15685 Bat 41 39–42
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(C) miR-5197 expression levels and tissue distribution are shown according to tissue atlas.

3.3. KEGG Pathway Analysis for the Three New miRs (miR-3529-5p, miR-7-1-3p, and
miR-548az-5p) Generated by Changes in miR-5197

While miR-5197 is implicated in KEGG pathways for p53 signaling, cancer, and
ubiquitin-mediated proteolysis (Figure S2), a range of other KEGG pathways are associated
with miR-3529-5p, miR-7-1-3p, and miR-548az-5p, with a number of overlapping, but also
distinctive, pathways between miR-7-1-3p and miR-548az-5p, as listed in Figure 4A, while
only miR-3529-5p is associated with Mucin-O-type biosynthesis and glycosphingolipid
biosynthesis (Figure 4A). When assessing the tissue distribution of miR-7-1-3p and miR-
548az-5p, some differences were observed, with miR-7-1-3p predominantly being expressed
in the brain, intestinal (including esophagus) tissue, and muscle (Figure 4B), but miR-548az-
5p in the lung, lymph nodes, and intestines (Figure 4C). Four genes were found to be
regulated by both miR-5197-3p and miR-7-1-3p (NPM3, RAB10, HMGN2, TMEM167A),
while CUL3 is regulated by both miR-5197-3p and miR-3529-5p; VGLL4 and WASL are
dependent on both miR-3529-5p and miR-7-1-3p. The gene interaction networks with the
three miRs are shown in Figure 4D.

The changes in miR-5197 sequences between pangolin and human affect the variations in
RNA sequences, and were found to alter RNA secondary structure (Figure 5). An increase in
the stability of miR-5197 in human was calculated as MFE−3.20 kcal/mol vs. −4.70 kcal/mol
(centroid structure: −2.90 kcal/mol vs. −3.10 kcal/mol structures), and in pangolin as MFE
(structure: −4.70 kcal/mol; centroid structure: −3.10 kcal/mol kcal/mol) according to the
RNAfold tool (http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi). Therefore,
it can be suggested that variations between SARS-CoV-2 genomes in different hosts may
possibly lead to the generation of different structural stabilities for RNA targets.

https://www.ebi.ac.uk/Tools/services/rest/clustalo/result/clustalo-I20200807-161825-0106-73056325-p2m/aln-clustal_num
https://www.ebi.ac.uk/Tools/services/rest/clustalo/result/clustalo-I20200807-161825-0106-73056325-p2m/aln-clustal_num
http://rna.tbi.univie.ac.at//cgi-bin/RNAWebSuite/RNAfold.cgi
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4. Discussion

The role of miRs in the regulation of host–pathogen interactions is still a vastly under-
explored topic with significant knowledge gaps in relation to human infectious disease,
including zoonosis. The current study reports in silico analysis of the conservation of seven
SARS-CoV-2-specific miRs, in six species across taxa suspected to be zoonotic carriers
for the virus, or previously identified as zoonotic hosts for other human viruses. Our
findings indicate that these seven SARS-CoV-2-specific miRs may possibly have roles in
viral–host co-evolution in zoonotic hosts, particularly highlighting pangolin, bat, cow,
and pig as putative zoonotic carriers. Furthermore, these seven miRs regulate genes that
play important roles in viral–host interactions and other relevant cellular and immuno-
logical processes. KEGG and GO analyses for these miRs highlighted roles linked to viral
pathogenicity and host responses in humans. While these pathways may be common to
numerous viral infection responses, they possibly play significant roles in SARS-CoV-2,
and therefore further investigations into their specificity relating to SARS-CoV-2 infec-
tion in particular are warranted. Interestingly, we identified that changes in miR-5197
nucleotide sequences between pangolin and human can generate three predicted new miRs
(miR-3529-5p, miR-7-1-3p, and miR-548az-5p), which by bioinformatics analysis show
differing tissue distribution in brain, lung, intestine, lymph nodes, and muscle, and have
different downstream regulatory effects on a number of KEGG pathways. This may be
of considerable importance as miR-5197 is localized in the S protein transcript area of the
SARS-CoV-2 genome.

From a total of 1594 and 1506 miRs from the Malayan and Chinese pangolin genomes,
333 have previously been reported using two complementary approaches ab initio, whereby
334 HHMMiR [33] and MiRPara [34] were shown to have similarity to the known miR335
genes in miRBase [35,36]. The miR sequences 336 accounted for <1% of the pangolin
genomes, with the transposable elements-related miR-9256a-1 and miR-396c being 337 of
the most abundant families [37].

Out of the seven miRs under study here, which were previously identified by us in the
SARS-CoV-2 genome and verified to be expressed in lung biopsies of SARS-CoV-2 patients
and in vitro cell models of infected A549 and NHEB cells [20], miR-3611 was the most
strongly conserved across all species; miR-5197 was most conserved in pangolin, pig, cow,
bat, and rat; miR-1307 was most strongly conserved in pangolin, pig, cow, bat, and human;
miR-3691-3p in pangolin, cow, and human; miR-3934-3p was most conserved in pig and
cow, followed by pangolin and bat; miR-1468 was most conserved in pangolin, pig, and bat;
while miR-8066 was most conserved in pangolin and pig. In humans, miR-3611 and miR-
1307 were most conserved, while miR-8066, miR-5197, miR-3934-3p and miR-1468 were
least conserved, compared with pangolin, pig, cow, and bat. This indicates that pathways
regulated by these different miRs may possibly play roles in host-tolerance, as well as
in adverse reactions, indicating that the most conserved miRs may possibly play parts
in co-evolution with the zoonotic host. On the other hand, following the virus jumping
species, including into human, this may cause detrimental effects via the modulation of
downstream-regulated immune and other metabolic pathways. When assessing Gene
Ontology (GO) pathways for target genes and proteins affected by the different miRs,
miR-3691 was linked with viral infection, viral mRNA translation, influenza life cycle,
RNA processing and RNA metabolism (Figure S1). miR-5197 was related to p53 signaling,
ubiquitin-mediated proteolysis, Ubl conjugation, and nucleic acid binding (Figure S2). The
most conserved miR across all species, miR-3611, was associated with nucleus and cytosol
(Figure S3), miR-1307 had strong links to spliceosome function and zinc finger proteins
(Figure S4), miR-3934-3p to the nucleus, pre-ribosome, chromatin, and DNA pairing
(Figure S5), miR-1468 to the regulation of RNA metabolism, gene expression, transcription,
metabolism and the regulation of stress responses (Figure S6), and miR-8066 was related
to mRNA splicing, the processing of pre-mRNA, cell cycle regulation, mTOR signaling,
cell metabolism and macroautophagy (Figure S7). This indicates the differing functions
for these various miRs in host–pathogen interactions, as well as in the regulation of viral
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transcription and cellular processing, downstream stress response regulation, and immune
and metabolic functions. It can be noted that several processes listed for the various miRs
above (stress response, viral infection life cycle and marcoautophagy) also link in with the
interferon response [38,39], which is strongly related to viral infection [40]. Furthermore it
must be considered that while some of these pathways relate generally to viral infection in
the host response, the specificity of these pathways in relation to SARS-CoV-2 infection
remains to be investigated in relation to strategic intervention. Therefore, in relation to
other viral infections, it may also be of interest to carry out further and similar comparative
analyses to aid the understanding of the disease-specific pathways mediated by miRs in
different viral infections.

Interestingly, out of the seven miRs under study, miR-3691-3p was found to be the
miR with the strongest association with viral infection and viral replication, as revealed by
Reactome pathway analysis (Figure S1) for proteins regulated by this miR, which was found
to be conserved between pangolin, cow, and human. These findings indicate that cow
may be a putative intermediate host between pangolin and human, but this will require
further investigation. While pangolins have been found to have unusual resistance against
viral, including coronavirus, infection [41,42], the cow is also well known for its unusual
antiviral responses, including those via neutralizing antibodies (“cattlebodies”), which are
effective, for example, against retroviral infections such as HIV [43], and are also under
investigation for their effectiveness against SARS-CoV-2. Coronaviruses are well known in
cattle and can cause gastroenteritis, respiratory disease, winter dysentery and shipping
fever pneumonia [44]. Furthermore, both bovine and porcine respiratory coronavirus have
been shown to have features in common with both SARS-CoV and SARS-CoV-2 [45].

Of putative interest was the finding that changes in miR-5197 sequences between
humans and pangolin can lead to the generation of three new miRs, which show differences
in KEGG pathway regulation. The correlation to the tissue distribution of miR-7-1-3p in the
brain and intestine may possibly be related to some of the COVID-19-related symptoms
observed in these organs. Furthermore, based on tissue atlas analysis, miR-548az-5p is
expressed in the lung, lymph nodes, and intestines, all of which are significant target organs
in COVID-19. This may indicate that these miRs, due to a lack of co-evolution with the
virus as is possibly observed in pangolin, may adversely affect the human host in these
specific sites. This may furthermore be of importance as miR-5197 is on the spike region
of the SARS-CoV-2 genome, and therefore this diversification of miR-5197 may possibly
aid its regulatory activities in the distinct tissue types, consequently affecting downstream
KEGG pathways. miR-5197 is critical for mucin-type O-glycan biosynthesis pathways,
which relate to both human and veterinary viral infections, including HTLV-1, Ebola, HIV-1,
HSV-1, avian influenza, and avian oncogenic retrovirus [46–51]. miR-5197 is also related
to the KEGG morphine addiction pathway, which is linked to enhanced HIV-1 infection,
HCV replicon expression, the reduced clearance of pulmonary influenza virus infection in
rats, and increased SAIDS in rhesus monkeys [52–57]. miR-5197 furthermore influences
the metabolism of xenobiotics by cytochrome P450 mechanisms and the TGF-β signaling
pathway, which is associated with viral entry and HIV infection [58] and is strongly linked
to both pulmonary and cardiovascular diseases [59–61]. Furthermore, miR-5197 is related
to p53 regulatory pathways and cancers, ubiquitin-related proteolysis, and molecular and
cellular GO pathways linked to nucleic acid binding and to nuclear and organelle function
(Figure S2) (please see further in depth discussion on these pathways in Ref. [20]).

Four genes that were identified to be regulated by both miR-5197-3p and miR-7-1-3p
were NPM3, RAB10, HMGN2, and TMEM167A. NPM3 has roles in ribosome biogenesis,
chromatin remodeling, the protein and histone chaperone function, and the RNA-binding
activity of nucleolar phosphoprotein B23/NPM [62,63]. It has furthermore been linked
to lung papillary adenocarcinoma [64]. RAB10 is a small GTPase and regulates intracel-
lular vesicle trafficking [65], and has been linked to Legionella pneumophila infection and
replication [66]. HMGN2 binds nucleosomal DNA and is associated with transcription-
ally active chromatin; it furthermore has antimicrobial activity against bacteria, viruses,
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and fungi [67,68], while specific roles in SARS-CoV-2 infection remain to be investigated.
TMEM167A is involved in the early part of the secretory pathway, and is a regulator of vesic-
ular trafficking [69,70]. CUL3 was identified to be regulated by both miR-5197-3p and miR-
3529-5p; importantly, it has roles in endothelial cell function and angiogenesis [71], which
may be of interest in relation to the strong endothelial-related responses observed in COVID-
19. CUL3 also plays roles in protein homodimerization activities and ubiquitin–protein
transferase activity, as well as in oxidative and electrophilic stress [13]. VGLL4 and WASL
were identified to be dependent on both miR-3529-5p and miR-7-1-3p. VGLL4 is an in-
hibitor of cell proliferation and can act as a tumor suppressor, including via T-cell-mediated
responses [72], and is also linked to meningioma and Wilson–Turner X-linked mental
retardation syndrome (https://www.genecards.org/cgi-bin/carddisp.pl?gene=VGLL4).
WASL regulates nuclear actin in transcriptional regulation [73], as well as actin cytoskeletal
organization, including in filopodia formation and during actin remodeling for evasion
strategies of NK-cell-mediated killing [74–77]. Importantly, WASL has also been found to
facilitate cellular entry for a range of picornaviruses [74], while its importance in SARS-
CoV-2 infection mechanisms needs verification. Diseases associated with WASL include
Wiskott–Aldrich Syndrome (eczema-thrombocytopenia-immunodeficiency syndrome) [78],
and WASL’s regulation of actin in the host is modified in Mycobacterium-mediated Bu-
ruli ulcers [79], pointing to its various roles in immune regulation and host–pathogen
interactions.

Of interest, we have also noted the difference in GC content in the miR sequences
between taxa in the putative zoonotic hosts, compared with human. As body temperature
differs between human and these zoonotic hosts, it may be speculated that this can have
some implications on miR function in the different species, as temperature is indeed an
important factor for annealing, with higher GC content reflecting higher temperature
tolerance. Interestingly, the higher GC content was reported to be from more stable
duplexes with their targets [80]. In this context, the normal body temperature of the
pangolin is 32 ◦C, while in bat this is 39–42 ◦C, the adult cow is around 38.5 ◦C, pig is around
38.7 ◦C, that of rat is 35.9 to 37.5 ◦C. and in adult chicken it is 40.6 ◦C to 41.7 ◦C. Previously,
it has been discussed that the higher body temperature and increased metabolism in bats
may serve as an evolutionary aid for their immune system by providing a powerful fight
during viral infections [81]. Moreover, the stability of the miR–target interaction shows a
negative correlation with body temperature; in other words, lower GC contents at higher
body temperatures result in less functional stability in miR–mRNA interactions [82,83].
Furthermore, as the calculated stability of miR-5197 in the human differed from that of
pangolin, this may suggest that possible variations between SARS-CoV-2 genomes in
different hosts may lead to the generation of different structural stabilities in RNA targets.

Indeed, various zoonotic hosts for SARS-CoV-2 have been discussed in the literature
during the current COVID-19 pandemic, but also in relation to the previous SARS-CoV
outbreaks. This has pointed to the involvement of, for example, bats, snakes, and pangolins,
but also, as many viruses jump from wild to domestic animals, sometimes having multiple
hosts, due to the disruption of ecological balance and habitat shifts caused by anthropogenic
activities, there are a number of domestic and companion animals that may need to be
considered, particularly as these will be in close contact with humans [84,85]. As SARS-
CoV-2 has indeed been reported in domestic species, such as felines and canines, we have
in the current study, besides bat and pangolin, also assessed the seven miRs in cow, pig,
chicken, and rat as exemplar domestic species, which have historically been linked to a
range of zoonotic diseases. In this context, the recent SARS-CoV-2 transmission to mink on
Danish mink farms further emphasizes the adaptability of this zoonotic virus, and the risk
of species-jumping and transmission caused by anthropogenic changes.

The aspect of miR-mediated regulation in viral infection is an emerging topic, with
relatively few studies so far in relation to human host responses, and it therefore warrants
further exploration, particularity also in relation to zoonotic disease, including in wild and
domestic species. Therefore, our identification here of differences in the conservation of
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the seven SARS-CoV-2-specific miRs previously identified in human in the several candi-
date zoonotic carriers under study, compared with human, may contribute to furthering
understanding of the miR-mediated regulation of virus–host coevolution, and its roles in
zoonotic disease spread and tolerance between species. Such miR-mediated regulation also
may help to further understand some of the detrimental effects observed in human host
immune responses when encountering new zoonotic pathogens.

With this in silico study we hope to pave the way for furthering research into the
regulatory roles of miRs in zoonosis. Targeting miRs in emerging infectious diseases may
be a promising novel strategy for therapeutic intervention.

5. Conclusions

The role of microRNAs in the regulation of host–pathogen interactions is a vastly
underexplored topic with significant knowledge gaps in relation to human infectious
disease, including zoonosis. The current study reports the conservation of seven SARS-
CoV-2-specific microRNAs in six species across taxa suspected to be zoonotic carriers
for the virus, or previously identified as zoonotic hosts for other human viruses. Our in
silico analysis indicates that these SARS-CoV-2-specific miRs may play possible roles in
viral–host co-evolution in a number of zoonotic hosts, particularly highlighting pangolin,
bat, cow, and pig as putative zoonotic carriers. Our findings may contribute to the cur-
rent understanding of some of the detrimental effects observed by human host immune
responses when encountering new zoonotic pathogens, and pave the way for further
investigations into the roles of miRs in zoonosis. Targeting miRs in emerging infectious
diseases may be a promising strategy for novel therapeutic intervention, which warrants
further investigation.

Supplementary Materials: The following are available online at https://www.mdpi.com/1999-491
5/13/1/117/s1, Figure S1, Reactome pathways for miR-3691-regulated target proteins. Target genes
for miR-3691 were identified using miR base and interaction networks generated using STRING
analysis. Reactome pathways (A,B), KEGG pathways (C), UniProt keywords (D) and molecular
function GO pathways (E) are highlighted in the different color nodes, see color key in the figure.
Known and predicted interactions are indicated by differently colored lines (see color key in figure).
Figure S2, Interaction pathways for miR-5197-regulated target proteins. Target genes for miR-5197
were identified using miR base and interaction networks generated using STRING analysis. The
following pathways are highlighted: (A) KEGG pathways; (B) UniProt keywords; (C) Molecular GO
function; (D) Cellular GO pathways. The individual pathways are highlighted in the different color
nodes, see color key in the figure. Known and predicted interactions are indicated by differently
colored lines (see color key in figure). Figure S3, Interaction pathways for miR-3611-regulated target
proteins. Target genes for miR-3611 were identified using miR base and interaction networks
generated using STRING analysis. The following pathways are highlighted: (A) Cellular GO
component; (B) Biological GO process. The individual pathways are highlighted in the different color
nodes, see color key in the figure. Known and predicted interactions are indicated by differently
colored lines (see color key in figure). Figure S4, Interaction pathways for miR-1307-regulated target
proteins. Target genes for miR-1307 were identified using miR base and interaction networks
generated using STRING analysis. The following pathways are highlighted: (A) Cellular GO
component; (B) PFAM protein domains; (C) INTERPRO protein domains; (D) SMART protein
domains. The individual pathways are highlighted in the different color nodes, see color key in the
figure. Known and predicted interactions are indicated by differently colored lines (see color key
in figure). Figure S5, Interaction pathways for miR-3934-regulated target proteins. Target genes for
miR-1307 were identified using miR base and interaction networks generated using STRING analysis.
The following pathways are highlighted: (A) Cellular GO component; (B) Reactome pathways.
The individual pathways are highlighted in the different color nodes, see color key in the figure.
Known and predicted interactions are indicated by differently colored lines (see color key in figure).
Figure S6, Interaction pathways for miR-1468-regulated target proteins. Target genes for miR-1468
were identified using miR base and interaction networks generated using STRING analysis. The
following pathways are highlighted: (A) Biological GO process; (B) Cellular GO component. The
individual pathways are highlighted in the different color nodes, see color key in the figure. Known
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and predicted interactions are indicated by differently colored lines (see color key in figure). Figure
S7, Interaction pathways for miR-8066-regulated target proteins. Target genes for miR-1468 were
identified using miR base and interaction networks generated using STRING analysis. The following
pathways are highlighted: (A) Reactome pathways; (B) Biological GO process; (C) Cellular GO
component. The individual pathways are highlighted in the different color nodes, see color key in
the figure. Known and predicted interactions are indicated by differently colored lines (see color key
in figure). Table S1, The conservation between the seven SARS-CoV-2 miR sequences, compared with
the putative zoonotic species under study and humans.
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