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Background. Idiopathic membranous nephropathy (IMN) is a major cause of adult nephrotic syndromes, and reliable noninvasive
biomarkers for diagnosis and monitoring are urgently needed. In this study, we performed small RNA (sRNA) sequencing to
explore sRNA profiles of urinary exosomes derived from IMN patients and healthy controls (CON) to provide clues for
identifying novel noninvasive sRNA biomarkers for IMN. Methods. Urine samples were collected from five healthy controls and
six patients with IMN. High-throughput sequencing was used to screen sRNA expression profiles of urinary exosomes from
patients with IMN in two independent cohorts. Results. Urinary exosomes were successfully isolated and used to obtain
exosomal sRNAs. We screened 131 differentially expressed miRNAs, including 28 specifically expressed miRNAs, then explored
the top 10 specifically expressed miRNAs in all IMN individuals. The specifically expressed miRNAs and differentially expressed
miRNAs provide potential biomarkers for IMN. Additionally, we discovered numerous sRNAs derived from genomic repetitive
sequences, which could represent an exciting new area of research. Conclusion. Herein, we revealed significant differences in
expression profiles of urinary exosomal miRNAs and repetitive region-derived sRNAs between patients with IMN and healthy
controls. The findings could facilitate the development of potential molecular targets for membranous nephropathy.

1. Introduction

Membranous nephropathy (MN) comprises an important
etiological factor of adult nephrotic syndrome [1]. A recent
large multicentre retrospective study that included 71,151
renal puncture cases in China revealed that the percentage
of MN was 23.4%, lower compared to IgA nephropathy but
rapidly increasing [2]. MN is categorized into two classes:
idiopathic membranous nephropathy (IMN) and secondary
membranous nephropathy. The majority of cases are IMN,
which is considered an organ-distinct autoimmune disease,
and about a third of cases are secondary to familiar diseases,
such as chronic infections, systemic autoimmune diseases,
medication or exposure, and certain malignancies [3].

IMN is considered an antibody-mediated kidney disease
where IgG autoantibodies from subepithelial immune com-
plexes with autoantigens are expressed on the podocyte cell
surface [4]. Sublethal damage to the overlying podocyte
results in cellular simplification, as well as the disruption of
the glomerular filtration barrier, leading to proteinuria along
with other nephrotic syndrome manifestations [5].

Presently, renal biopsy constitutes the gold standard for
the IMN diagnosis. Nevertheless, a repeat renal biopsy is
not effective for evaluating disease severity, as well as pro-
gression considering it is an invasive method. Recently, many
novel plasma or urine biosignatures have been developed,
among which aPLA2R is the most commonly used because
it is highly specific [6]. However, it is not very sensitive
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(between 52% and 78%) [7]. Thus, it is essential to explore
novel noninvasive diagnostic biomarkers.

Exosomes are lipid bilayer membrane-originated vesicles
from endocytic compartments that are 30-120 nm and occur
in nearly all biofluids, such as urine [8–10]. Because exo-
somes possess cell-type-distinct signatures, they have been
suggested as predictive biosignatures for a variety of clinical
conditions [11, 12]. Urinary exosomes consist of proteins,
mRNAs, and miRNAs which are produced by glomerular
(podocytes, endothelial, and mesangial cells) and tubular cells.
Thus, urinary exosomes may provide sensitive and accurate
biomarkers for renal dysfunction and structural injury [13].
Numerous studies have uncovered distinct urinary exosomal
miRNA expression patterns in individuals with kidney disease
[10, 14–16]. In IMN, several exosome-derived circular RNAs
are significantly differentially expressed in exosomes from
serum and urine [17]. Thus, comprehensive analysis of sRNAs
(including miRNAs) from urinary exosomes of IMN patients
could provide useful disease biomarkers.

Herein, we analysed differences in urinary exosomal
sRNA (including miRNA) patterns between IMN patients
and healthy controls (CON) and uncovered both specifically
expressed and differentially expressed miRNAs. The findings
could enhance the design of prospective molecular targets for
IMN diagnosis.

2. Materials and Methods

2.1. Patients. We screened eleven people in this study,
belonging to two groups: (1) an IMN group (six people)
and (2) a CON group (five people). All IMN patients were
identified based on aPLA2R tests and renal biopsies
performed at the Zhejiang Provincial People’s Hospital,
Zhejiang’s Department of Nephrology, China. The baseline
demographic and clinical data were documented at the time
of kidney biopsy. Five healthy volunteers from the Physical
Examination Center were recruited in the study as controls.
The Zhejiang Provincial People’s Hospital’s ethics committee
approved this study, and all work was carried out as per the
Zhejiang Provincial People’s Hospital ethical standards.
Informed consent was given by all subjects.

2.2. Sample Acquisition and Purification of Exosomes. Whole-
stream early morning urine samples were collected from each
patient, as well as healthy control. Upon collection, urine
samples were transferred to centrifuge tubes and span for
10min at 2000 × g at 4°C. Afterwards, we aliquoted the super-
natant into to fresh centrifuge tubes and span for 30min at
10,000 × g at 4°C, and then, filtration through a 0.45μm filter
was performed. The collected filtered liquid was used for exo-
some purification using an exosome extraction kit (Wako Pure
Chemical Industries, Osaka, Japan) as per the manufacturer’s
provided protocol. Briefly, the sample concentration to 1mL
was conducted with the Amicon Ultra-15 Ultracel-100K
device (Merck KGaA, Darmstadt, Germany). The concentrated
sample was inoculated with Streptavidin Magnetic Beads
(60mg) and 350μL Exosome Capture Immobilizing Buffer,
1μg of biotinylated mouse Tim4-Fc, and 50μL Exosome Bind-
ing Enhancer, and then overnight incubation was conducted at

4°C. Afterwards, beads were rinsed thrice with washing buffer
the next day, and the bound extracellular vesicles (EVs) were
eluted with Exosome Elution Buffer.

2.3. Transmission Electron Microscopy (TEM). TEM was per-
formed to assess exosome morphology using a PLSW
201901VIPI500-6 instrument (100biotech, Peking, China).
Firstly, 10μL of the sample was introduced to a copper grid;
then incubation was conducted for 1min. A filter paper was
employed to absorb excess liquid. A 10μL volume of phos-
photungstic acid was added dropwise to the grid, incubated
for 1min, and excess liquid was again removed using a filter
paper. After air drying, exosomes were visualised using an
FEI Tecnai Spirit TEM T12 instrument (FEI, Hillsboro, OR,
USA), and an electron-sensitive Olympus KeenView CCD
camera was employed to acquire images.

2.4. Western Blotting. Following the manufacturer’s protocols,
total exosomal proteins were isolated by a Protein Extraction
Kit (Applygen Technologies Inc., Beijing, China); then a BCA
Protein Assay Kit was employed to assay protein concentra-
tion. Thereafter, fractionation of the proteins was conducted
with an 8-10% SDS-PAGE, then transfer-embedded onto a
polyvinylidene difluoride membrane. Subsequently, 5% nonfat
milk was employed to block the membranes, which were then
incubated with the primary antibodies: CD9 (1 : 1000, Bioss,
Inc., Woburn, MA, USA), CD63 (1 : 1000, GeneTex, Irvine,
CA, USA), and CD81 (1 : 800, GeneTex, Irvine, CA, USA) at
a 1 : 1000 dilution, then with specifiedHRP-conjugated second-
ary antibodies. Signals were detected using chemiluminescence
reagents (Beyotime, Shanghai, China).

2.5. RNA Extraction. The total Exosome RNA and Protein
Isolation kit (Invitrogen, Life Technologies, USA) was
employed to isolate the total RNA from the exosomes and
maintained at -80°C for later use. Moreover, the Agilent
2200 TapeStation (Agilent Technologies, Santa Clara, CA,
USA) was employed to assay the RNA quality for sequencing.

2.6. Sequencing of Small RNA and Data Analyses. High-
throughput sequencing of urinary exosomes was performed
for the six individuals with IMN and the five healthy controls,
and sRNA libraries were processed using a NEBNext Multi-
plex Small RNA Library Prep Set for Illumina (NEB, Ipswich,
MA, USA) as per the protocol provided by the manufacturer.
In brief, we ligated the NEB 3′ SR Adaptor to the 3′-end of
miRNAs, PIWI-interacting RNAs (piRNAs), and small
interfering RNAs (siRNAs), and products were hybridized
with the SR RT primer. The single-stranded DNA adaptor
was then converted to a double-stranded DNA, and the 5′
-end adapter was ligated to the 5′-ends of miRNAs. Besides,
the first-strand cDNA was synthesised with the M-MuLV
Reverse Transcriptase, followed by PCR amplification by the
LongAmp Taq 2x Master Mix with SR Primer for Illumina
and an index primer. Afterwards, we purified the PCR
products by polyacrylamide gel electrophoresis, and DNA
fragments (140 to 160bp sizes) were recovered and solubilised
in 8μL of elution buffer. Thereafter, the library quality was
assessed using an Agilent Bioanalyzer 2100 system.
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Table 1: The demographic, as well as the baseline clinical information of the study participants.

Group IMN group CON group p value

Gender (female/male) 3/3 3/2 0.740

Age (years), median (range) 55.8 (26-72) 55.8 (26-64) 1.000

Urinary protein excretion (g/24 h) 5.89 (2.95-8.43) / /

Serum creatinine (μmol/L) 75.03 (56.7-109.8) 75.64 (61.9-91.2) 0.953

Serum urea nitrogen (mmol/L) 5.19 (2.97-7.69) 4.59 (3.38-5.74) 0.503

eGFR (mL/min/1.73m2) 98.96 (63.79-133.47) 97.9 (88.73-107.44) 0.926

APLA2R (U/mL) 145.38 (51.76-323.9) / /

Serum albumin (g/L) 21.95 (15.1-32.1) 43.68 (42.8-45.3) 0.006

Hypertension, n (%) 2 (33.33%) 2 (40%) 0.819

Diabetes, n (%) 0 (0.0%) 0 (0.0%) /
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Figure 1: Authentication of urinary exosomes. (a) Transmission electron microscopy (TEM) images indicating exosome morphology. (b)
Levels of CD81, CD9, and CD63 proteins measured by western blotting.
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Figure 2: Analysis of small RNAs (sRNAs) contained in exosomes. Most of the sRNAs in exosomes are 20 nt and 22 nt in length, consistent
with previous reports.
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RNA libraries were put through 50bp single-end read
sequencing on an Illumina HiSeq 2500 platform. Thereafter,
we removed the adaptors, as well as the low-quality sequences

from the raw sequencing data, and clean reads were obtained
and used for successive assessment. Reads were mapped to
the hg38 human reference genome [18], and miRBase 20.0
was used to uncover the miRNAs. sRNAs originated from
repetitive genomic regions were identified using the Repeat-
Masker web resource [19]. The original sequencing data was
included within the supplementary information file (available
here). The DEGseq (2010) R package was employed to per-
form differential expression analysis [20]. Differentially
expressed miRNAs were those that satisfied the criteria of fold
change ≥ 2 and p < 0:05.

2.7. Prediction of Target Genes and Functional Annotation.
Target genes of exosomal miRNAs were predicted using
TargetScan (http://www.targetscan.org) and Funrich software
3.1.3. GeneOntology (GO) enrichment assessment, and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
assessment was conducted based on the DAVID online web
resource (https://david.ncifcrf.gov/).

3. Results

3.1. Patient Characteristics. The demographic and the base-
line clinical information of the participants is indicated in
Table 1. The 24-hour proteinuria was remarkably higher
in the IMN group in contrast with the controls, and the
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Figure 3: Expression profiling of miRNAs in urinary exosomes originated from the CON and IMN groups. (a) Venn diagram illustrating
overlapping miRNAs in the two groups. (b) Venn diagram indicating overlapping differentially expressed miRNAs among the two groups
(fold change ≥ 2 and p < 0:05). (c) Heatmap illustrating the expression of differentially expressed miRNAs in the two groups (fold change
≥ 2 and p < 0:05). The colour key designates the expression levels of miRNAs ranging from low (blue) to high (red).
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Figure 4: Specifically expressed miRNAs in urinary exosomes in the
IMN group.
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Low

Medium

High

Log10(TPM+1)
IMN specific

miR_name CON IMN

hsa-miR-450a-2-3p 0.00 1.22
hsa-miR-664a-5p 0.00 1.79
hsa-miR-514a-5p 0.00 1.19
hsa-miR-342-5p 0.00 1.21
hsa-miR-331-5p 0.00 1.26
hsa-miR-509-3p 0.00 1.35
hsa-miR-532-3p 0.00 1.28
hsa-miR-877-5p 0.00 1.30
hsa-miR-26b-3p 0.00 0.95
hsa-miR-501-5p 0.00 0.92

hsa-miR-2355-3p 0.00 0.81
hsa-miR-671-3p 0.00 1.01

hsa-miR-30c-1-3p 0.00 1.33
hsa-miR-1269a 0.00 1.04

hsa-miR-145-3p 0.00 1.01
hsa-miR-497-5p 0.00 1.41
hsa-miR-340-3p 0.00 1.08

hsa-miR-3928-3p 0.00 1.04
hsa-miR-378d 0.00 1.60
hsa-miR-3615 0.00 1.23

hsa-miR-508-5p 0.00 1.03
hsa-miR-510-5p 0.00 0.72
hsa-miR-409-3p 0.00 0.99
hsa-miR-23b-5p 0.00 1.42
hsa-miR-185-3p 0.00 0.74
hsa-miR-548ba 0.00 0.79

hsa-miR-194-3p 0.00 1.22
hsa-miR-155-5p 0.00 1.41

(a)

Low

Medium

High

Log10(TPM+1)IMN specific
miR_name CON1 CON2 CON3 CON4 CON5 IMN1 IMN2 IMN3 IMN4 IMN5 IMN6

hsa-miR-450a-2-3p 0.00 0.00 0.00 0.00 0.00 1.16 1.17 1.30 1.23 1.31 1.13
hsa-miR-664a-5p 0.00 0.00 0.00 0.00 0.00 1.90 1.89 1.73 1.66 1.83 1.64
hsa-miR-514a-5p 0.00 0.00 0.00 0.00 0.00 1.23 0.98 1.36 0.93 1.27 1.21
hsa-miR-342-5p 0.00 0.00 0.00 0.00 0.00 0.85 1.16 1.48 1.20 1.18 1.20
hsa-miR-331-5p 0.00 0.00 0.00 0.00 0.00 1.50 1.18 0.74 1.34 1.32 1.15
hsa-miR-509-3p 0.00 0.00 0.00 0.00 0.00 1.57 1.29 1.20 0.77 1.47 1.43
hsa-miR-532-3p 0.00 0.00 0.00 0.00 0.00 1.34 1.53 1.30 1.28 0.65 1.19
hsa-miR-877-5p 0.00 0.00 0.00 0.00 0.00 1.36 1.22 1.25 1.10 1.59 1.04
hsa-miR-26b-3p 0.00 0.00 0.00 0.00 0.00 0.85 1.20 0.79 1.10 0.58 0.91
hsa-miR-501-5p 0.00 0.00 0.00 0.00 0.00 1.03 0.92 1.14 0.88 0.00 0.93

hsa-miR-2355-3p 0.00 0.00 0.00 0.00 0.00 0.92 0.83 0.70 1.02 0.00 0.86
hsa-miR-671-3p 0.00 0.00 0.00 0.00 0.00 0.85 1.28 0.58 0.76 1.05 1.15

hsa-miR-30c-1-3p 0.00 0.00 0.00 0.00 0.00 1.12 0.90 1.23 1.23 1.66 1.43
hsa-miR-1269a 0.00 0.00 0.00 0.00 0.00 1.16 0.98 1.17 0.50 0.53 1.32

hsa-miR-145-3p 0.00 0.00 0.00 0.00 0.00 0.00 0.57 1.16 1.08 1.07 1.26
hsa-miR-497-5p 0.00 0.00 0.00 0.00 0.00 1.34 0.96 1.72 1.13 1.08 1.66
hsa-miR-340-3p 0.00 0.00 0.00 0.00 0.00 1.12 1.15 1.27 1.35 0.44 0.00

hsa-miR-3928-3p 0.00 0.00 0.00 0.00 0.00 0.98 1.23 0.49 0.00 1.30 1.19
hsa-miR-378d 0.00 0.00 0.00 0.00 0.00 1.94 1.38 1.36 0.67 1.78 1.57
hsa-miR-3615 0.00 0.00 0.00 0.00 0.00 1.53 0.90 1.11 1.24 0.00 1.47

hsa-miR-508-5p 0.00 0.00 0.00 0.00 0.00 1.31 1.25 0.96 0.55 0.00 1.07
hsa-miR-510-5p 0.00 0.00 0.00 0.00 0.00 0.00 0.72 0.93 0.90 0.00 0.89
hsa-miR-409-3p 0.00 0.00 0.00 0.00 0.00 0.00 1.37 0.94 0.86 1.01 0.94
hsa-miR-23b-5p 0.00 0.00 0.00 0.00 0.00 0.00 1.68 1.67 1.46 0.00 1.53
hsa-miR-185-3p 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.77 0.76 0.00 1.04
hsa-miR-548ba 0.00 0.00 0.00 0.00 0.00 1.08 0.94 0.00 1.00 0.00 0.60

hsa-miR-194-3p 0.00 0.00 0.00 0.00 0.00 1.23 1.36 1.61 0.00 0.00 1.25
hsa-miR-155-5p 0.00 0.00 0.00 0.00 0.00 1.82 1.56 1.48 0.97 0.00 1.10

(b)

Figure 5: Continued.
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serum albumin was remarkably lower in the IMN group (all
p < 0:001).

3.2. Differentially Expressed miRNA Patterns of Urinary
Exosomes from the IMN and CON Groups. To assess the
expression patterns of miRNAs in urine exosomes originated
from healthy controls and IMN individuals, exosomes from
each urine sample were extracted as described above,
visualised by TEM, and the urine exosomes appeared to be cir-
cular (Figure 1(a)).Western blotting verified that the exosomal
biomarkers CD9, CD63, and CD81 were present (Figure 1(b)).
Total RNA was isolated from exosomes and assayed by an
Agilent 2200 Bioanalyzer to provide size profiles and measure
the concentration. The results revealed that sRNAs, and
especially miRNAs, were abundant in exosomes (Figure 2).

We then performed high-throughput sequencing of miR-
NAs in exosomes in urine samples of individuals with IMN,
as well as healthy controls, and 210 and 318 miRNAs were
identified in the CON and IMN groups, respectively, by miR-
Base20.0/miRBase1 (Figure 3(a)). Furthermore, 131 miRNAs
were remarkably differentially expressed (fold change ≥ 2
and p < 0:05; Figures 3(b) and 3(c)).

3.3. Specifically Expressed and Differentially Expressed
miRNAs in the IMN and CON Groups.Among the 131 differ-
entially expressed miRNAs, we uncovered 28 specifically
expressed miRNAs between the CON and IMN groups
(Figures 4 and 5(a)). Additionally, we found that several
specifically expressed miRNAs were not expressed in some
individuals in the IMN group (Figure 5(b)). Thus, we explored
the top 10 distinctly expressed miRNAs in the two groups
(Figure 5(c)) and the specifically expressed miRNAs expressed
in all IMN individuals (Figure 5(d)). We also identified 108
differentially coexpressed miRNAs in the IMN and CON
groups, of which 95 were upregulated and 13 were downregu-
lated as indicated in Figure 6(a). The top 10 upregulated and
downregulated coexpressed differential miRNAs are shown
in Figure 6(b).

3.4. Prediction of Target Genes and GO/Pathway Assessment.
To confirm the differentially expressed miRNAs target genes,
we firstly predicted the target on the basis of two algorithms,
the FunRich3.1.3 and TargetScan, respectively. There were
4793 miRNA-target pairs collectively predicted by 2 algo-
rithms. Next, the DAVID online database was employed to
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hsa-miR-378d 0.00 1.60 
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Figure 5: Specifically expressed miRNAs in urinary exosomes originated from the CON and IMN groups. (a) Heatmap illustrating 28
specifically expressed miRNAs in the CON and IMN groups. (b) Heatmap illustrating 28 specifically expressed miRNAs in individuals. (c)
Heatmap illustrating the top 10 specifically expressed miRNAs in the CON and IMN groups. (d) Heatmap illustrating specifically
expressed miRNAs expressed in all IMN individuals. The colour key indicates the expression levels of specifically expressed miRNAs
ranging from low (blue) to high (red). The log10 (TPM) values are indicated.
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explore the GO as well as KEGG analyses of these target genes.
The main biological process terms were related to positive
modulation of transcription, modulation of transcription from
RNA polymerase II promoter, and modulation of apoptotic
process. The main cell component terms were associated with
Golgi subcompartment, Golgi membrane, and focal adhesion.
The main molecular function terms were linked to ubiquitin
protein ligase activity, ubiquitin-protein transferase activity,
and ubiquitin-like protein ligase activity (Figure 7). KEGG
pathway analysis showed that proteoglycans in cancer, MAPK
signalling cascades, and pathways in cancer were associated
with target genes (Figure 8).

3.5. Other Kinds of Small RNAs in the IMN and CONGroups. In
addition to miRNAs, we also uncovered numerous other kinds
of sRNAs in the two groups. Among them, sRNAs originated
from transfer RNA (tRNA), ribosomal RNA (rRNA), and other

kinds of RNA in exosomes accounting for the most significant
proportion (Figure 9(a)). We also analysed repetitive regions
of the genome and found that SINE2/tRNAwas themost highly
expressed, followed by SINE1/7SL, then SINE (Figure 9(b)).

4. Discussion

Over the past few decades, IMN incidence has increased
worldwide, from 8.89% of primary glomerular disease in
2005 to 2009 to 19.11% in 2010 to 2014 [21]. Urinary
exosomes contain large amounts of miRNAs, making urine
a potentially useful biological sample for biomarkers related
to renal dysfunction and structural injury [9, 10, 22]. Herein,
we identified several differential miRNAs in urinary exo-
somes derived from the CON and IMN groups that are
potentially informative biomarkers for IMN.
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Figure 6: Differential expression of exosome miRNAs in the CON and IMN groups. (a) Volcano plot illustrating differentially expressed
miRNAs in the CON and IMN groups. Red dots denote upregulated miRNAs, and blue dots denote downregulated miRNAs (fold change
≥ 2 and p < 0:05). (b) Heatmap illustrating the top 10 upregulated as well as downregulated coexpressed differential miRNAs. The colour
key indicates the expression levels of specifically expressed miRNAs ranging from low (blue) to high (red). The log10 (TPM) values are
indicated.
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We identified 28 exosomal miRNAs that were specifically
expressed in IMN (Figures 5(a) and 5(b)) and focused on the
top 10 specifically expressed miRNAs, as well as those
specifically expressed in all IMN individuals. Among these
miRNAs, some have been reported previously to be closely
linked to nephropathy. miR-378 suppresses apoptosis of
podocytes through TRAF5 and thereby represses diabetic
nephropathy (DN) progression, and it also regulates the
protective function of mitogen-activated protein kinase 1
(MAPK1) in the stimulation of kidney cell fibrosis, as well as
mesangial hypertrophy [23, 24]. miR-155-5p enhances oxa-
late- and calcium-triggered kidney oxidative stress injury by
repressing matrix gla protein (MGP) expression and aggravat-
ing both inflammation and apoptosis in acute kidney injury
tissues via the Jak2/Stat3 pathway [25]. miR-497 attenuates
the endothelial-mesenchymal transition of glomerular
endothelial cells via the modulation of rho linked coiled-coil
containing protein kinase (ROCK) in diabetic nephropathy
(DN) [26]. miR-532-3p is differentially expressed in membra-

nous glomerulonephropathy (MGN) and chronic kidney
disease (CKD) based on the analysis of renal biopsy sections
[27, 28]. Additionally, multiple reports have opined that
miR-23b has a close correlation with inflammation, as well
as autoimmune diseases because it can enhance the oxLDL-
triggered inflammatory response of macrophages via the
A20/NF-κB signalling cascade [29, 30].

Overall, 108 miRNAs were differentially coexpressed
between the two groups. The top 10 up- and downregulated
coexpressed miRNAs are shown in Figure 6(b), and seven of
the miRNAs are known to be associated with renal diseases.
miR-9-5p confers a protective response to chronic kidney
injury, as well as renal fibrosis [31]. miR-92b-3p mediates
advanced glycation end product- (AGE-) triggered develop-
ment of renal abnormalities in rats with DN [32]. miR-125b-
5p might be prospective biosignature for obstructive renal
injury in individuals with ureteral obstruction linked to renal
function [33]. miR-132-3p is expressed across the kidney
cortex in mice, as well as humans with severe kidney damage
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or fibrosis [34]. The miR-139-5p expression level in kidney tis-
sues of IRI-treated mice is reduced to 40.4% relative to healthy
controls [35]. miR-145-5p may be a modulator of DN by inhi-
biting high glucose- (HG-) triggered apoptosis via targeting of
Notch1, then dysregulating apoptotic factors [36].

Additionally, four miRNAs may have a potential impact
on renal diseases. miR-27b may inhibit angiogenesis and
fibroblast activation via the PI3K/AKT signalling pathway
[37]. miR-615-3p enhances the phagocytic potential of splenic
macrophages through targeting ligand-dependent nuclear
receptor corepressor [38]. miR-197-3p is dominantly impli-
cated in signalling cascades resulting in cytokine production
[39, 40].

These specifically expressed exosomal miRNAs as well as
differentially coexpressed exosomal miRNAs provide poten-
tial biomarkers for IMN.

To explore further about the functions of these differen-
tially expressed miRNAs, further GO and KEGG assessments
were conducted on the basis of those target genes of differen-
tially expressed miRNAs. Remarkably, a lot of enriched GO
terms were related to ubiquitin and apoptotic. Previous
studies have proved that endoplasmic reticulum stress,
autophagy, and ubiquitin-proteasome system serve a pivotal
role in the onset of proteinuric kidney disease [41, 42]. For
KEGG pathway assessment, we revealed a lot of target genes
were enriched in the PI3K/AKT/mTOR cascade which was a
well-known autophagy pathway. As in our previous study,
we demonstrated that autophagy participates in the podocyte
injury in IMN [43].

We also analysed repetitive regions of the genome in
exosomes. Interestingly, the percentages of sRNAs from

SINE1/7SL were slightly increased in the IMN group
(Figure 2(b)). A previous study reported that cellular stress
such as virus infection might cause upregulation of SINE ele-
ments [44]. However, no relation was found between IMN
and SINE in the present work. The functional analysis of
these repetitive regions of the genome in IMN individuals
may be an exciting new area of research.

5. Conclusion

In conclusion, our findings demonstrate, for the first time, a
remarkable difference in urinary exosomal miRNAs and
repetitive region-derived sRNAs between individuals with
IMN and healthy controls. The findings may promote the
development of promising molecular targets for IMN.
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