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The heart valve ailments (HVAs) are due to the defects in the valves of the heart and if untreated may cause heart failure, clots, and
even sudden cardiac death. Automated early detection of HVAs is necessary in the hospitals for proper diagnosis of pathological
cases, to provide timely treatment, and to reduce the mortality rate. The heart valve abnormalities will alter the heart sound and
murmurs which can be faithfully captured by phonocardiogram (PCG) recordings. In this paper, a time-frequency based deep
layer kernel sparse representation network (DLKSRN) is proposed for the detection of various HVAs using PCG signals. Spline
kernel-based Chirplet transform (SCT) is used to evaluate the time-frequency representation of PCG recording, and the features
like L1-norm (LN), sample entropy (SEN), and permutation entropy (PEN) are extracted from the different frequency
components of the time-frequency representation of PCG recording. The DLKSRN formulated using the hidden layers of
extreme learning machine- (ELM-) autoencoders and kernel sparse representation (KSR) is used for the classification of PCG
recordings as normal, and pathology cases such as mitral valve prolapse (MVP), mitral regurgitation (MR), aortic stenosis (AS),
and mitral stenosis (MS). The proposed approach has been evaluated using PCG recordings from both public and private
databases, and the results demonstrated that an average sensitivity of 100%, 97.51%, 99.00%, 98.72%, and 99.13% are obtained
for normal, MVP, MR, AS, and MS cases using the hold-out cross-validation (CV) method. The proposed approach is
applicable for the Internet of Things- (IoT-) driven smart healthcare system for the accurate detection of HVAs.

1. Introduction

The heart valve ailments (HVAs) are cardiovascular abnor-
malities, and these ailments occur due to the defect in any
of the valves (tricuspid, pulmonary, mitral, and aortic) of
the heart [1, 2]. The valves of the heart prevent the backward
flow of the blood, and for the proper functioning of the heart,
the valve should be effectively closed or opened during the
flow of blood from one chamber to another chamber of the
heart [3]. The HVAs are classified as mitral stenosis (MS),
mitral valve prolapse (MVP), mitral regurgitation (MR),
and aortic stenosis (AS) based on the defect in the heart
valves [4]. The MR ailments occur due to the improper clos-

ing of the mitral valve, which further causes the reverse flow
of blood from the left ventricle to the left atrium [5]. Simi-
larly, the AR refers to the improper closing of the aortic valve;
as a result, the backward flow of blood from the aorta to the
right ventricle may occur [5]. Moreover, the MS is termed as
the problem in the opening of the mitral valve, where the left
ventricle is not getting a sufficient amount of blood from the
left atrium [6]. Similarly, the AS pathology refers to the
improper opening of the aortic valve, which prevents the flow
of blood from the left ventricle to the aorta of the heart [5]
[6]. For the diagnosis of these pathologies, different imaging
techniques such as computed tomography scan, magnetic
resonance imaging (MRI), cardiac echocardiography, and
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ultrasonic devices have been used [7–10]. It has been
reported from the literature that various quantitative param-
eters such as transvalvular velocity, average value area, and
mean value of transvalvular gradient have been considered
to determine the progression of HVAs [11]. The aforemen-
tioned imaging modalities have limitations, such as the selec-
tion of tuning parameters in ultrasonic devices to obtain
better resolution images of heart chambers and valves for
the diagnosis of HVAs [10, 12]. Also, these imaging tech-
niques are costly and require trained medical staff for the
accurate assessment of HVAs [13]. The phonocardiography
(PCG) is a noninvasive and low-cost diagnostic test used
for the detection of HVAs [14, 15]. The diagnostic features
such as the duration of both the systolic segment and dia-
stolic segment, morphologies of both S1 and S2 components,
and the appearance of murmurs have been investigated for
the diagnosis of HVAs [14, 16]. To assist the clinicians in
the diagnosis of HVAs, an automatic diagnosis system
(ADS) will be helpful especially while treating patients
admitted in the intensive care unit where continuous record-
ing and monitoring of PCG signal is done 24 hours [17]. The
ADS comprises the evaluation of various diagnostic features
from the PCG recording and automated classification of
HVAs using the PCG signal features [13]. For smart health-
care and the Internet of healthcare things (IoHT) applica-
tions [18, 19], the automated diagnosis of HVAs from the
PCG signal is a challenging area of research. Therefore, the
development of new methods for the extraction of PCG
signal features and the classification of HVAs is required.

In the last two decades, various algorithms have been
used for the automated detection of HVAs using PCG sig-
nals. These algorithms have considered different feature
extraction methodologies to extract the features from the
PCG signal and used various machine learning classifiers
for the categorization of HVAs. A review of various auto-
mated methods for the detection of HVAs has been reported
in [20, 21]. The time, frequency, time scale, and time-
frequency domain-based features from PCG signal have been
used for the detection of HVAs. The time-domain features
from the PCG signals have been used in [22–26], for the
categorization of both normal and abnormal heart sounds.
Similarly, in [27–30], the frequency domain features from
the PCG signals have been considered for the discrimination
of normal and abnormal cardiac sounds. The time-scale-
based methods such as discrete wavelet transform (DWT)
[31, 32], empirical mode decomposition (EMD) [31, 32],
and tunable Q-wavelet transforms (TQWT) [33] of PCG sig-
nals have also been used for the detection of HVAs. More-
over, the time-frequency analysis-based approaches such as
the short-time Fourier transform (STFT) [34, 35], synchros-
queezing transform (SST) [36], and other time-frequency
decomposition-based approaches [37–39] of PCG signals
are used for the categorization of HVAs. The machine learn-
ing techniques such as the support vector machines (SVM)
[40], random forest (RF) [41], convolutional neural network
(CNN) [42], and hidden Markov model (HMM) [43] have
been used for the classification of HVAs. It is evident from
the literature that time-frequency and time-scale analysis-
based approaches have demonstrated higher classification

performance for the detection of HVAs using PCG signals.
Son et al. [44] have combined the Mel frequency cepstral
coefficients (MFCC) and DWT-based features from the
PCG signals and used these features for the detection of
HVAs. They have considered various machine learning clas-
sifiers for HVA detection. In [45], the authors have applied a
novel algorithm based on wavelet fractal dimension and a
twin support vector machine (TWSVM) for the classification
of HVAs using PCG signals. Moreover, Ghosh et al. [36] have
extracted the magnitude and phase features from the time-
frequency representation of the segmented PCG cycles for
the discrimination of HVAs. They have used synchrosqueez-
ing transform (SST) for the evaluation of the time-frequency
matrix from the PCG signal. The SST-based method has
drawbacks such as it has poor time-frequency resolution for
PCG signals as it uses the coefficient reassignment in the
time-frequency plane based on the instantaneous frequency
of the PCG signal [36, 46]. Also, the SST method has shown
less performance for the detection of HVAs. The methods
reported in the literature have segmented the PCG signal into
cardiac cycles and then extracted features from the seg-
mented cardiac heart sound cycles for the detection of HVAs.
The PCG signal with multiple cardiac heart sound cycles
effectively captures the variations in the amplitudes and
shapes of S1 and S2 sound components and the duration of
systolic and diastolic segments [14]. The existing approaches
have not considered the PCG signals from all HVA classes to
design the automated diagnosis frameworks. Therefore, an
intelligent system which uses PCG signal with multiple car-
diac heart sound cycles and classifies all HVAs is required
for healthcare applications.

The PCG signal is nonstationary, and the components of
this signal such as S1, S2, and murmurs are nonlinear and
time-varying [47, 48]. In our previous work, we have ana-
lyzed the PCG signal using Chirplet transform (CT) for the
detection of HVAs [44]. The CT works well for chirp-like sig-
nals with linearly time-varying components [49, 50]. But the
CT fails to capture the transition from S1 component to sys-
tolic murmur, and from S2 component diastolic murmur in
the time-frequency plot of the pathological PCG signals
[13]. In this work, we have considered the spline CT (SCT)
as the extension of CT for the evaluation of the time-
frequency matrix from the PCG signal. The SCT has advan-
tages such as it has better time-frequency localization for
the nonlinearly time-varying components of the nonstation-
ary signal as compared to CT [51]. Therefore, we can expect
that the time-frequency matrix computed using SCT of the
PCG signal can effectively capture the pathological variations
and provide better resolution in the time-frequency domain
of the PCG signal. Recently, the convolutional neural net-
work (CNN) and stacked autoencoder- (SAE-) based deep
neural network (DNN) methods have been used for the auto-
mated assessment of HVAs using PCG signals [44, 52]. In
order to obtain the optimal parameters in CNN and SAE
networks, rigorous training based on the gradient descent
algorithm is used [53]. Also, these networks require more
instances during the training process for obtaining the opti-
mal model parameters [54]. The DNN based on extreme
learning machine- (ELM-) autoencoder has advantages such
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as it requires less training time for the evaluation of the
model parameters [55], and the ELM-autoencoder model
can be efficiently implemented in real-time for the dimension
reduction [56]. The sparse representation-driven classifica-
tion methods have been widely used for various biomedical
applications [13, 57–59]. These methods require fewer fea-
tures for training instances and also have fewer training
parameters for the prediction of class labels from the test fea-
ture vectors [59]. The SRC has shown better performances as
compared to other machine learning approaches for the clas-
sification of HVAs from PCG signal features [13]. The kernel
sparse representation classifier (KSRC) uses the kernel trick
to map the feature instances to the higher dimensional space,
and the SRC is applied in the higher dimensional space
for the classification [60, 61]. The KSRC has shown better
classification performance for the dataset which consists of
nonlinearly separable feature instances as compared to SRC
[57, 62]. Therefore, the DNN developed based on the ELM-
autoencoder, and KSRC will be effective for the automated
detection of HVAs using the time-frequency representation
of the PCG signal. The contributions of this paper are written
as follows:

(i) The SCT-based time-frequency analysis is used for
the evaluation of time-frequency representation of
PCG recording

(ii) The nonlinear features such as the L1-norm (LN),
sample entropy (SEN), and permutation entropy
(PEN) are computed from different frequency
components of the SCT-based time-frequency
matrix of PCG signals

(iii) The deep layer kernel sparse representation network
(DLKSRN) is proposed for the detection of HVAs
using the time-frequency domain features of the
PCG signal

The remaining sections of this manuscript are written as
follows. In Section 2, the proposed method for the detection
and classification of HVAs is described. The results obtained
from the proposed work are discussed in Section 3, and
conclusions are presented in section 4.

2. Proposed Method

The flow diagram of the proposed HVA detection approach
is depicted in Figure 1, and the details of the various steps
involved in the proposed approach are explained in detail
in the following subsection.

2.1. PCG Signal Collection and Filtering. In this work, we have
collected the PCG recordings from a public database avail-
able in (https://github.com/yaseen21khan/Classification-of-
Heart-Sound-Signal-Using-Multiple-Features-). The detailed
description of the PCG signals database is given in [44].
The database contains a total of 1000 PCG recordings of dif-
ferent classes. Out of those 1000 recordings, each class (nor-
mal or pathological) contains 200 PCG recordings. The
annotations for the PCG signals for normal (N) and patho-
logical (MS, MR, AS, and MVP) classes are given in the data-
base. The PCG recordings are given in wav file format, and
these signals were recorded from the subjects with different
time durations [44]. The resolution of each PCG recording
in the database is 16 bits, and the sampling frequency is
8 kHz. In this work, the collected PCG recordings are down-
sampled to 4 kHz for the time-frequency analysis. Moreover,
we have also evaluated the performance of the proposed
approach using the database available in 15 recorded PCG
signals. These 15 PCG signals were recorded from 15 differ-
ent subjects (12 males and 3 females with the age group of
27 ± 5 years) using Thinklab digital stethoscope (https://
www.thinklabs.com/). The subjects have given written consent
before recording the PCG signal in a noninvasive way [36]. The
sampling frequency of each recorded signal is 4kHz. In this
work, we have also considered the Michigan heart sound and
murmur database (MHSMD) (http://www.med.umich.edu/lrc/
psb_open/html/repo/primer_heartsound/primer_heartsound
.html) to evaluate the performance of the proposed method.
The MHSMD contains both normal and abnormal (AS,
MS, MR, and MVP) PCG signals with a sampling frequency
of 44.1 kHz [63]. Each PCG signal from MHSMD has been
downsampled to 4 kHz. For each database PCG recording, a
Butterworth bandpass filter with a lower and upper cutoff
frequency of 25Hz and 900Hz is used [64]. After filtering,
the amplitude normalization is performed with respect to
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Figure 1: Flow diagram of the proposed approach for HVAs detection.
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the maximum amplitude value of the PCG recording. The
normalized PCG recording, xðnÞ, is evaluated as follows [65]:

x nð Þ = x nð Þ
max x 1ð Þj j, x 2ð Þj j,⋯, x Nð Þj j½ � , ð1Þ

where jxðnÞj, n = 1, 2,⋯,N is the absolute value of the ampli-
tude of nth sample of the PCG recording, and N is the total
number of samples. After normalization, the time-frequency
representation of each PCG recording is computed using
SCT. The following subsection describes the spline kernel-
based CT for the extraction of the time-frequency matrix from
PCG recording.

2.2. Spline Kernel-Based Chirplet Transform (SCT). The
spline kernel-based CT is the CT with a modified kernel
function [51]. This modified kernel function uses different
frequency rotate and frequency shift operators for the time-
frequency representation of the nonstationary signal. For a
PCG signal, xðnÞ containing N samples, the discrete SCT is
evaluated as follows [51]:

T ~n, kð Þ = 〠
N−1

n=0
�x nð Þwσ n − ~nð Þe−j 2πnk/Nð Þ for ~n ∈ ni, ni+1ð Þ, ð2Þ

with �xðnÞ = xðnÞ ·ΨRðn,QÞ ·ΨSðn, ~n,QÞ. T represents the
time-frequency matrix, where ΨRðn,QÞ and ΨSðn, ~n,QÞ are
the frequency-rotate and frequency-shift operators, respec-
tively. The window function is given by [49, 50],

wσ nð Þ = 1ffiffiffiffiffiffi
2π

p
σ
e− n2/2σ2ð Þ ð3Þ

The frequency-rotate operator is expressed as in (4), and
the frequency shift operator is as in (5) [51]:

ΨR n,Qð Þ = e
−j〠

L

l=1
qil n−nið Þl+γi

 !
,

ð4Þ

ΨS n, ~n,Qð Þ = e
j〠
L

l=1
qil ~n−nið Þl−1n

 !
,

ð5Þ

where Qði, lÞ = qil represents the local polynomial coefficient
matrix for the spline kernel. The parameter L is denoted as
the order of the spline. The parameter γi in SCT should sat-
isfy the following conditions as [51],

γi − γi+1 = 〠
L

l=1

qi+1l

l
n − nið Þl, ð6Þ

with initial value γ1 = 0. The factor i = 1, 2,⋯, I is the ith
piece, where the spline is defined in a piecewise polynomial
form and I is the total number of pieces [51]. For a patholog-
ical PCG signal, we have compared the time-frequency repre-
sentations that are obtained using both CT and SCT
methods. The AS pathological PCG recording is shown in

Figure 2(a). The time-frequency contour plots of pathologi-
cal PCG signal computed using CT and SCT are shown in
Figure 2(b) and Figure 2(c), respectively. It can be observed
from the figure that the time-frequency plot obtained using
CT has an energy distribution between 25Hz and 300Hz.
However, the murmurs are high-frequency sounds produced
during the recording of the PCG signal [66, 67]. It is clearly
observed from the time-frequency plot of the PCG recording
obtained using SCT that the murmur energies are distributed
between 100Hz and 780Hz. This shows that the information
regarding the murmurs is not effectively captured in the CT-
based time-frequency representation and the SCT provides
better time-frequency localization for PCG recording as
compared to CT.

The PCG signals for normal (N) and pathological classes
such as MR, MS, AS, and MVP are depicted in Figure 3(a),
Figure 3(c), Figure 3(e), Figure 3(g), and Figure 3(i), respec-
tively, and the time-frequency plots for these signals were
obtained using SCT are shown in Figure 3(b), Figure 3(d),
Figure 3(f), Figure 3(h), and Figure 3(j), respectively. It can
be observed that the pattern associated with the pathological
PCG signal has different morphology for each type of HVA
as compared to the normal PCG signal. The energies in the
S1 and S2 components of the normal PCG signals are grossly
distributed from 25Hz to 300Hz (as shown in Figure 3(b)).
However, during HVA, the energy is distributed above
300Hz in the time-frequency plot of the PCG signal. Each
frequency component in the time-frequency matrix of the
PCG recording has different characteristics for normal and
pathological PCG signals. Therefore, the features computed
from each frequency component of the PCG recording in
the time-frequency domain will be helpful for the accurate
detection of HVAs. In this study, we have extracted three
types of nonlinear features, namely, L1-norm, sample
entropy, and permutation entropy from the first 400 fre-
quency atoms or components of the time-frequency repre-
sentation of the PCG recording. The L1-norm (LN) features
for the kth frequency component is evaluated as [68]

LNk = 〠
N

~n=1
T ~n, kð Þj j: ð7Þ

Moreover, we have also evaluated the sample entropy
(SEN) [69] and permutation entropy (PEN) [70] features from
the kth frequency atom of the matrix T. The features are
denoted as SENk and PENk. A 1200-dimensional feature vec-
tor based on the combination of 400 LN, 400 SEN, and 400
PEN features is formulated for each PCG recording obtained
from the database and 15 recorded PCG signals. The KSRC
classifier is used to detect HVAs from the 1200-dimensional
feature vector. In the following subsection, the descriptions
of DLKSRN for the classification of HVAs are presented.

2.3. Deep Layer KSRC. In this work, the DLKSRN is proposed
for the classification of HVAs using PCG signal features. The
architecture of DLKSRN is shown in Figure 4. It consists of
an input layer, first ELM-autoencoder hidden layer, second
ELM-autoencoder hidden layer, and an output layer. In this
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work, the hold-out and 10-fold cross-validation (CV) tech-
niques are used to select the training and test PCG record-
ings. The feature matrix which comprises of the training
feature vectors of the PCG recordings and the class labels
are given as, fzi, yigmi=1 with, zi ∈ℝp and yi ∈ 1, 2, 3, 4, 5,
where 1, 2, 3, 4, and 5 are class label representations for nor-
mal, MVP, AS, MR, andMS classes. p is the size of the feature
vector obtained from each PCG recording, andm is the num-
ber of PCG recordings considered during the training of the
DLKSRN. The hidden layer matrix in DLKSRN is evaluated
by solving the following optimization problem as,

J =min
Wi

γ

2
HiWi − ~Z
��� ���2

2
+ Wik k1

� �
, ð8Þ

where Wi is the ith hidden layer weight matrix and ~Z is the
input feature matrix for the ELM-autoencoder. For first
ELM-AE, ~Z is the feature matrix (Z) containing PCG instances
and time-frequency-based features. Similarly, for the second
AE, the feature matrix (~Z) is the hidden layer matrix (H1)
obtained from the first ELM-autoencoder. The weight matrix
evaluation for each ELM-autoencoder is given by,

Wi = HT
i Hi +

I
γ

� �−1
HT

i
~Z: ð9Þ

The feature matrix obtained in the second hidden layer of
ELM-autoencoder is given as follows:

Z∗ = f f W1Zð ÞW2ð Þ: ð10Þ

The new feature matrix, Z∗, is used as the input to the
KSRC layer of the proposed DLKSRN for the classification.
KSRC is a kernel-based sparse representation technique, and
it does not require rigorous training like deep neural networks
(DNNs) to evaluate the class labels of the test feature vectors
[60, 61]. It consists of four steps to estimate the class label of test
PCG feature vectors. These steps are (i) mapping of the feature
vectors of PCG signal into higher dimension space using kernel
function, (ii) use of kernel-based dimension reduction for fea-
ture reduction, (iii) evaluation of coefficient vector and residual
to test PCG feature vector by solving L1-norm optimization
problem, and (iv) assignment of the class label to test PCG vec-
tor based on finding the minimum distance for all classes [60,
61]. The SRC has less performance when the feature vectors
are not linearly separable. To overcome this limitation, KSRC
maps the input PCG feature vector to a higher dimension space
and performs the SRC in that new space.

The mapping function Ψðz∗Þ projects each training fea-
ture vector to a higher dimensional space, and it is given as
Ψðz∗Þ = ½Ψ1ðz∗Þ,Ψ2ðz∗Þ,⋯⋯ ⋯Ψrðz∗Þ�T , where Ψðz∗Þ ∈
ℝr with r≫ p is the dimension of new feature space or
higher-dimension space. In new feature space, we can repre-
sent the mapped feature vector,Ψðz∗t Þ, as the linear combina-
tion of the mapped training feature vectors of the PCG
recordings, and it is given by Ψðz∗t Þ =∑p

i=1γiΨðz∗i Þ =Ψγ,

where γ = ½γ1, γ2,:⋯⋯⋯ ⋯ γm�T is the coefficient vector,
and it can be evaluated based on the solution of the following
optimization problem as [60, 61]

min
γ

γk k1, ð11Þ
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Figure 2: (a) Pathological PCG signal (AS pathology with murmurs present between S1-component and S2-component of each cardiac
cycle). (b) Time-frequency representation of the pathological PCG signal obtained using CT. (c) Time-frequency representation of the
pathological PCG signal obtained using SCT.
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subjected to Ψðz∗t Þ =Ψγ. In KSRC, the dimension of
kernel space r is higher as compared to the second hidden
layer space ~p, and also, it can be higher than the number
of training instances m. Therefore, for getting a sparse
solution of γ in (11), the dimension reduction step is used
in the kernel space. The dimension reduction is performed

based on the use of the transformation matrix A. The
constraint for the optimization problem in (11) is
modified as follows:

ATΨ z∗tð Þ =ATΨγ, ð12Þ
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Figure 3: (a) Typical PCG recording of the normal class. (b) Time-frequency representation of normal PCG signal obtained using SCT. (c)
PCG recording of the MR class. (d) Time-frequency representation of MR PCG signal obtained using SCT. (e) PCG recording of the MS class.
(f) Time-frequency representation of MS PCG signal obtained using SCT. (g) PCG recording of the AS class. (h) Time-frequency
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PCG signal obtained using SCT.
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where the transformation matrix can be evaluated as
follows:

A =ΨS: ð13Þ

The matrix S is the pseudotransformation matrix, and it is
evaluated using any one of the dimension reduction tech-
niques (random projection, kernel principal component anal-
ysis (KPCA), and kernel linear discriminant analysis (KLDA))
[60, 61]. The expression in (12) can be simplified as follows:

ΨTΨ z∗tð ÞST =ΨTΨγS: ð14Þ

The above equation can also be written as, STkðz∗t , z∗i Þ =
KγS, where kðz∗t , z∗i Þ and K are the kernel function and the
kernel matrix, respectively. The original optimization problem
in KSRC is modified as follows:

min
γ

γk k1, ð15Þ

subject to STkðz∗i , ztÞ = STKγ. The residual for the test
instance z∗t for the cth class is obtained as follows [60]:

rsc z∗tð Þ = STk z∗t , z
∗
ið Þ − STKδc

�� ��
2, ð16Þ

where δc = ½δcðγ1Þ, δcðγ2Þ,⋯, δcðγmÞ�, and δcðγiÞ is the
characteristic function for the cth class. This function is
defined as follows [60, 61]:

δc γið Þ =
γi if yi = c

0 elsewhere

( )
: ð17Þ

The residual for each class is computed, and the final class
label for the second hidden layer feature vector of test PCG
recording is given by

yt = arg min
c=1,2::⋯C

rsc z∗tð Þ: ð18Þ

In this study, the number of neurons used in the first and
second hidden layers of the proposedDLKSRN is 800 and 600,
respectively. Moreover, we have also considered the random
forest (RF) [36] and K-nearest neighbour (KNN) [65] classi-
fiers for the classification of HVAs from the feature vectors
of test PCG recordings. The optimal parameters of the RF clas-
sifier [71] such as the number of trees, number of splits for
each decision tree, and depth of each decision tree obtained
using the grid-search technique are 20, 20, and 15, respec-
tively. For the KNN classifier, we have considered the number
of the nearest neighbours as 3 and used Euclidean as the dis-
tance metric [72]. The performance of the 1200 dimensional
SCT-based time-frequency features of PCG recordings is eval-
uated using DLKSRN, KSRC, RF, and KNN classifiers with the
hold-out cross-validation (CV) strategy. For hold-out CV,
60%, 10%, and 30% of PCG signal instances are considered
for training, validation, and testing of the DLKSRN classifier.
Similarly, for the 10-fold CV case, 90% of PCG signal
instances from the feature matrix are used to train the
DLKSRN classifier. The remaining 10% PCG signal instances
are evaluated during the testing phase of the DLKSRN classi-
fier in each fold. The metrics, namely, the sensitivity, specific-
ity, precision, F-score, and overall accuracy (OA), are used to
evaluate the performance of DLKSRN, KSRC, RF, and KNN
classifiers [72]. In the following section, the results obtained
using the proposed approach are discussed in detail.

Two layer ELM-AE Output

W2W1

W1 H1 H2W2

H2

Z
H1

H1

1200
dimentional

feature vector
Z

Input layer
Hidden layer 1 Hidden layer 2

KSRC
classifier

N
MS
MR

MVP
AS

Figure 4: Architecture of the proposed DLKSRN for the classification of HVAs.
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3. Results and Discussion

In the first part of this section, the statistical analysis results
of SCT-based features of PCG recordings are presented. In
the second part, the classification results using RF, KNN,
KSRC, and the proposed DLKSRN models are shown. The
third part of this section describes the comparison and
advantages of the proposed approach for HVA detection.
In this study, we have conducted a statistical analysis of all

1200 SCT-based features of the PCG recording. The results
are shown for 15 different features out of 1200 features. The
intraclass variations of the LN features for 18th, 50th, 196th,
293th, and 378th frequency components for all N, MVP, AS,
MR, and MS categories are depicted in Figures 5(a)–5(e),
respectively. Similarly, the within-class variations of the SEN
features for the 26th, 140th, 250th, 333th, and 395th frequency
components for all classes are shown in Figures 5(f)–5(j),
respectively. Moreover, in Figures 5(k)–5(o), we have shown
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Figure 5: (a) Boxplot of 18th L1 norm feature or attribute (Feat 18) for all classes. (b) Boxplot of 50th L1 norm attribute (Feat 50) for all
classes. (c) Boxplot of 196th L1 norm attribute (Feat 196) for all classes. (d) Boxplot of the 293rd L1 norm attribute (Feat 293) for all
classes. (e) Boxplot of the 378th L1 norm attribute (Feat 378) for all classes. (f) Boxplot of the 26th SENT attribute (Feat 26) for all classes.
(g) Boxplot of 140th SENT attribute (Feat 140) for all classes. (h) Boxplot of the 215th SENT attribute (Feat 215) for all classes. (i) Boxplot
of the 333th SENT attribute (Feat 333) for all classes. (j) Boxplot of the 395th SENT attribute (Feat 395) for all classes. (k) Boxplot of the
36th PENT attribute (Feat 36) for all classes. (l) Boxplot of the 57th PENT attribute (Feat 57) for all classes. (m) Boxplot of the 128th
PENT attribute (Feat 128) for all classes. (n) Boxplot of the 251st PENT attribute (Feat 251) for all classes. (o) Boxplot of the 346th PENT
attribute (Feat 346) for all classes.
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the intraclass variations of PEN features for 36th, 57th, 128th,
251st, and 346th frequency components in all classes. The
parameters such as mean and standard deviation values of

features whose intraclass variations given in boxplots of
Figure 3 are shown in Table 1. It is noted that each feature
has distinct mean values for each of the pathological classes

Table 1: Mean ± SD of the selected features extracted from the time-frequency matrix for the five pathological classes.

Feature Feature number N MS MR AS MVP

L1-norm

Feat 18 0:3212 ± 0:0796 0:3231 ± 0:1094 0:2446 ± 0:1478 0:4286 ± 0:1009 0:2699 ± 0:1105

Feat 50 0:2374 ± 0:0530 0:2802 ± 0:1110 0:2179 ± 0:1701 0:3402 ± 0:0793 0:2086 ± 0:0789

Feat 196 0:4748 ± 0:1212 0:3154 ± 0:1460 0:2217 ± 0:1392 0:3597 ± 0:1128 0:2995 ± 0:1706

Feat 293 0:1498 ± 0:1256 0:3104 ± 0:1690 0:2774 ± 0:1182 0:6083 ± 0:2066 0:3155 ± 0:1425

Feat 378 0:0525 ± 0:0637 0:1898 ± 0:1380 0:2782 ± 0:1184 0:5697 ± 0:1914 0:1652 ± 0:1186

SEN

Feat 426 0:2315 ± 0:0693 0:3213 ± 0:1580 0:3747 ± 0:1238 0:3820 ± 0:1034 0:2906 ± 0:1501

Feat 540 0:2467 ± 0:0591 0:3490 ± 0:1531 0:3242 ± 0:0965 0:3919 ± 0:1787 0:2908 ± 0:1318

Feat 615 0:1600 ± 0:0325 0:1864 ± 0:0908 0:2342 ± 0:1238 0:3418 ± 0:1588 0:1852 ± 0:0766

Feat 733 0:2613 ± 0:0724 0:3046 ± 0:1837 0:4197 ± 0:1099 0:3354 ± 0:0858 0:3437 ± 0:0961

Feat 795 0:2175 ± 0:0536 0:3343 ± 0:1465 0:4140 ± 0:1088 0:3162 ± 0:0715 0:3490 ± 0:1617

PEN

Feat 836 0:6661 ± 0:0408 0:7094 ± 0:0279 0:7490 ± 0:0495 0:6783 ± 0:0431 0:7142 ± 0:0390

Feat 857 0:7657 ± 0:0378 0:7635 ± 0:0276 0:7927 ± 0:0521 0:7302 ± 0:0429 0:7658 ± 0:0285

Feat 928 0:7174 ± 0:0613 0:7040 ± 0:0595 0:7429 ± 0:0480 0:7964 ± 0:0401 0:7751 ± 0:0431

Feat 1051 0:7543 ± 0:0430 0:7628 ± 0:0387 0:7815 ± 0:0417 0:7849 ± 0:0553 0:7469 ± 0:0385

Feat 1146 0:7610 ± 0:0270 0:7363 ± 0:0368 0:7490 ± 0:0550 0:7675 ± 0:0692 0:7319 ± 0:0353

Table 2: Classification results obtained for automated detection of HVAs using various classifiers with SCT domain features and hold-out
CV.

Classifier Class
Performance measure

OA (%)
TP TN FP FN Precision (%) Sensitivity (%) Specificity (%) F-score (%)

RF

N 60 227 0 0 97:75 ± 2:63 98:33 ± 2:35 99:38 ± 0:74 98:00 ± 1:50

95.66

MS 60 227 6 0 88:60 ± 3:77 96:99 ± 1:39 96:72 ± 1:30 92:56 ± 1:90

MR 49 238 1 11 96:31 ± 1:87 87:99 ± 4:62 99:13 ± 0:42 91:94 ± 3:20

AS 59 228 1 1 92:38 ± 3:59 95:33 ± 1:82 97:90 ± 1:04 93:79 ± 1:63

MVP 59 228 5 1 98:22 ± 1:24 93:32 ± 4:56 99:56 ± 0:31 95:67 ± 2:79

KNN

N 60 231 0 0 98:69 ± 1:35 99:66 ± 0:74 99:64 ± 0:37 99:17 ± 0:82

97.00

MS 57 234 3 3 90:16 ± 1:65 97:66 ± 0:91 97:28 ± 0:49 93:76 ± 1:28

MR 59 232 2 1 97:91 ± 1:46 93:99 ± 3:45 99:48 ± 0:35 95:89 ± 2:19

AS 58 233 3 2 98:24 ± 2:11 91:99 ± 3:20 99:57 ± 0:52 94:99 ± 2:20

MVP 57 234 1 3 96:41 ± 2:56 97:33 ± 1:90 99:04 ± 0:71 96:85 ± 1:76

KSRC

N 60 236 0 0 100:0 ± 0:00 100:0 ± 0:00 100:0 ± 0:00 100:0 ± 0:00

98.66

MS 59 237 1 1 96:13 ± 2:12 98:99 ± 0:91 98:98 ± 0:56 97:54 ± 1:52

MR 60 236 0 0 98:66 ± 2:17 97:66 ± 1:90 99:66 ± 0:55 98:15 ± 1:89

AS 58 238 0 2 99:00 ± 1:49 96:99 ± 2:47 99:74 ± 0:38 97:96 ± 1:29

MVP 59 237 3 0 96:70 ± 1:99 96:66 ± 1:17 99:15 ± 0:51 96:66 ± 1:01

DLKSRN

N 60 238 0 0 100:0 ± 0:00 100:0 ± 0:00 100:0 ± 0:00 100:0 ± 0:00

99.23

MS 59 239 1 1 98:24 ± 1:02 99:01 ± 0:10 99:00 ± 0:63 99:13 ± 0:14

MR 60 238 1 0 99:02 ± 0:23 98:76 ± 1:25 99:88 ± 0:16 99:00 ± 0:26

AS 60 238 0 1 99:18 ± 0:64 97:95 ± 1:38 99:82 ± 0:01 98:72 ± 1:33

MVP 59 239 1 1 96:89 ± 1:02 97:36 ± 1:29 99:56 ± 0:11 97:51 ± 1:82
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(AS, MS, MR, MVP) and normal class. The SEN feature for
more than 300 frequency components of the SCT-based
time-frequency matrix has a lower mean value for the normal
class as compared to the pathological classes. Similarly, more
than 230 PEN features have lower mean values for the normal
class, and more than 200 L1-norm features have higher mean
values for the AS class. The pathological signature forMS is the
presence of diastolic murmurs [73], andmurmurs are observed
between the systolic interval of PCG recording in MVP pathol-
ogy [74]. In MS and AS pathologies, the murmurs have low-
pitch sounds. Similarly, the high-pitch sounds are observed in
the PCG recording during AR-basedHVA [14]. The aforemen-
tioned pathological changes on the PCG recording affect the

morphologies of the SCT-based time-frequency matrices.
Hence, the features from the time-frequency matrices have dis-
tinct mean and standard deviation values. We have also used
the analysis of variance- (ANOVA-) based test [75] to verify
the statistical significance of SCT-based time-frequency
features. It is observed from the ANOVA test that all 1200
features extracted from the SCT-based time-frequency repre-
sentation of PCG recording have p values less than 0.001 and
is significant for the detection of HVAs.

The classification results of RF, KNN, KSRC, and
DLKSRN are shown in Table 2. In this work, we have consid-
ered five random trials based on the hold-out CV to evaluate
the performance of each classifier. The performance metrics
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Figure 6: Confusion matrix of classifier obtained using 1200 dimensional feature vectors with PCG signals: (a) RF classifier; (b) KNN
classifier; (c) KSRC; and (d) DLKSRN.

Table 3: Results of the classification using the DLKSRN classifier with ten-fold CV.

HVDs Measures (%) Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

N

Precision 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100:0 ± 0:00

Sensitivity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100:0 ± 0:00

Specificity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100:0 ± 0:00

F-score 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100:0 ± 0:00

MS

Precision 100.0 90.90 100.0 95.23 100.0 95.23 95.23 100.0 100.0 100.0 97:65 ± 3:27

Sensitivity 100.0 100.0 95.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99:50 ± 1:58

Specificity 98.75 98.75 100.0 98.73 100.0 100.0 100.0 98.75 100.0 98.73 99:37 ± 0:66

F-score 100.0 95.23 100.0 97.56 100.0 97.56 100.0 97.43 97.56 100.0 98:53 ± 1:69

MR

Precision 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100:0 ± 0:00

Sensitivity 100.0 95.00 90.00 95.00 100.0 100.0 100.0 100.0 100.0 100.0 98:00 ± 3:49

Specificity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100:0 ± 0:00

F-score 100.0 97.43 100.0 97.43 100.0 100.0 100.0 100.0 94.73 100.0 98:95 ± 1:83

AS

Precision 100.0 100.0 95.23 100.0 100.0 95.00 100.0 100.0 100.0 100.0 99:02 ± 2:06

Sensitivity 100.0 100.0 100.0 100.0 95.00 100.0 100.0 100.0 95.00 100.0 99:00 ± 2:10

Specificity 100.0 100.0 100.0 98.73 100.0 100.0 100.0 97.46 100.0 100.0 98:98 ± 1:80

F-score 94.73 100.0 97.56 100.0 100.0 100.0 100.0 100.0 100.0 97.56 98:98 ± 1:80

MVP

Precision 95.23 100.0 100.0 95.00 100.0 95.23 100.0 95.23 100.0 100.0 98:06 ± 2:49

Sensitivity 100.0 100.0 95.00 100.0 100.0 100.0 95.00 95.00 100.0 100.0 98:50 ± 2:41

Specificity 100.0 100.0 98.75 100.0 97.50 100.0 100.0 100.0 100.0 98.73 98:00 ± 1:54

F-score 95.23 97.43 97.43 100.0 100.0 97.43 100.0 97.56 97.56 97.43 98:00 ± 1:54

All OA 100.0 99.33 99.04 100.0 100.0 98.05 98.11 99.25 99.86 98.84 99:24 ± 0:74
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are shown in the mean and standard deviation format in
Table 2. Also, we have shown the confusion matrices of RF,
KNN, KSRC, and DLKSRN classification models in
Figures 6(a)–6(d), respectively. It is evident that the average
number of true positives is high using DLKSRN as compared
to the RF, KNN, and KSRC classifiers. The number of true
positive (TP), true negative (TN), false positive (FP), and
false-negative (FN) values is listed in Table 2 for normal
and other pathological classes. It can be observed that
DLKSRN has less number of average FN and FP values for
each class. The values of the metrics such as precision, sensi-
tivity, specificity, and F-score are also high using DLKSRN
as compared to other classification approaches. It is also
observed that the average accuracy of DLKSRN is higher than

KSRC, RF, and KNN classifiers. The DLKSRN classification
results for 10-fold CV are shown in Table 3. The classification
results of KSRC, RF, and KNN classifiers with 10-fold CV are
depicted in Figure 7. The precision values for normal, MS,
MR, AS, and MVP classes over all 10 folds are depicted in
Figures 7(a)–7(e). Similarly, the sensitivity values for all clas-
ses with ten-fold CV are shown in Figures 7(f)–7(j). In
Figures 7(k)–(o), we have shown the variation in specificity
values for all ten folds for all classes. Moreover, the F-score
values are depicted in Figures 7(p)–7(t) for normal, MS,
MR, AS, and MVP classes. It is observed from the results that
for MS class, the sensitivity is 95% after three folds and
reached 100% for other folds. Similarly, the specificity values
of DLKSRN for the first, second, fourth, eighth, and tenth
fold are more than 98.5%. Similarly, for theMR class, the sen-
sitivity values of KSRC for the second, third, and fourth folds
are less than the remaining folds. For the MR class, the spec-
ificity values for all folds of both DLKSRN and KSRC are
100%. Similar variations are also observed for other patho-
logical cases using the DLKSRN classifier. It is also observed
that the sensitivity, specificity, precision, and F-score values
of DLKSRN are higher for all folds as compared to RF classi-
fiers for each class. In some folds, the KNN and KSRC have
demonstrated similar sensitivity, specificity, and F-score
values. The overall accuracy of DLKSRN for 10-fold CV
using SCT-based time-frequency features is 99.24%. This
value is higher than the average accuracy values of KSRC
(98.90%), KNN (97.12%), and RF (96.12%) classifiers. It
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Figure 7: Precision values of the KSRC, RF, and KNN classifiers obtained using the 10th fold cross-validation for (a) normal class, (b) MS
class, (c) MR class, (d) AS class, and (e) MVP class. Sensitivity values of the KSRC, RF, and KNN classifiers obtained using the 10th fold
cross-validation for (f) normal class, (g) MS class, (h) MR class, (i) AS class, and (j) MVP class. Specificity values of the KSRC, RF, and
KNN classifiers obtained using the 10th fold cross-validation for (k) normal class, (l) MS class, (m) MR class, (n) AS class, and (o) MVP
class. F-score values of the KSRC, RF, and KNN classifiers obtained using the 10th fold cross-validation for (p) normal class, (q) MS class,
(r) MR class, (s) AS class, and (t) MVP class.

Table 4: Overall accuracy values obtained using the DLKSRN
classifier for various number of neurons in the 1st and 2nd hidden
layer of validation and test sets for N vs. MS vs. MR vs. AS vs.
MVP classification scheme.

Number of neurons Overall accuracy (%)
1st hidden layer 2nd hidden layer Validation set Test set

200 100 94.60 95.86

400 200 96.00 96.26

600 400 96.20 96.66

800 600 97.80 99.23

1000 800 95.80 97.33
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can be noted that the nonlinear features extracted using SCT
of PCG recording are able to classify the HVAs accurately
using DLKSRN. In this study, the parameters of the DLKSRN
classifier such as the number of neurons in the 1st and 2nd
hidden layers are selected based on the maximum accuracy
values in the validation and test sets. The variations in the
overall accuracy values with hidden neurons in the 1st and
2nd hidden layers are shown in Table 4. It can be observed
from the table that the overall accuracy value of the DLKSRN
classifier is high when the number of neurons in the 1st and
2nd hidden layers are 800 and 600, respectively. The overall
accuracy value decreases by increasing the number of neu-
rons in both hidden layers. Similarly, for the MHSMD data-
base, the classification results obtained using the DLKSRN
classifier are shown in Table 5. It is observed that the pro-
posed SCT-based time-frequency domain features combined
with the DLKSRN classifier have obtained an overall accu-
racy value of 96.79%. The sensitivity and specificity values
are greater than 94% for each class using the DLKSRN classi-
fier. Moreover, we have tested the effectiveness of our pro-
posed approach with 15 recorded PCG signals. The
DLKSRN model which has been trained using the features
from the public database has been used to test the perfor-
mance of the private database. The LN, SEN, and PEN fea-
tures are extracted from all 15 recorded PCG signals. The
trained DLKSRN model successfully predicted all 15 feature
vectors of PCG recordings as normal class thereby showing
the effectiveness of the proposed approach for real-time
precision of HVAs.

The objective of this study is the HVA detection using
nonlinear features extracted from the SCT-based time-

frequency analysis of PCG recording. The proposed features
are found to be discriminative with the lowest p values
obtained using the statistical test. The classification results
obtained using the hold-out and 10-fold CV-based PCG
instance selection reveal that the proposed approach has
obtained an overall accuracy of more than 99% for the detec-
tion of HVA. A comparison with the existing algorithms for
automated HVA detection is shown in Table 6. Safara et al.
[76] developed the automated approach using wavelet packet
decomposition-based feature extraction technique and SVM
classifier for the discrimination of MR, AS, and AR-based
HVAs with PCG recordings. They have achieved an accuracy
of 97.56%. Maglogiannis et al. [77] used the SVM classifier
coupled with the morphological features (standard values of
S1 and S2 peaks and other features) for the detection of MR
and MS pathologies and reported an accuracy of 91.23% in
classifying two HVAs. Moreover, Zheng et al. [78] employed
the energy fraction and energy-based features coupled with
the SVM classifier for the automated discrimination of HVAs
such as tricuspid insufficiency (TI), pulmonary stenosis (PS),
mitral insufficiency (MI), and AS. They have obtained an
overall accuracy of 97.17% in classifying the four HVAs.
The time-frequency domain magnitude and phase features
extracted using the SST of PCG signal have been used in
[36] for the discrimination of AS, MS, and MR classes. They
have obtained an overall accuracy value of 95.12% in classify-
ing the three classes. The combination of MFCC- and DWT-
based features extracted PCG signal, along with SVM classi-
fier, has been used for automated HVA detection with an
overall accuracy of 97.9% [44]. The CT-based time-
frequency features obtained from PCG and composite

Table 5: Classification results obtained for automated detection of HVAs using the DLKSRN classifiers with SCT domain features and hold-
out CV.

Database used Class Precision (%) Sensitivity (%) Specificity (%) F-score (%) OA (%)

MHSMD

N 98:07 ± 2:07 100 ± 0:00 99:48 ± 0:56 99:01 ± 1:06

96:79 ± 0:18
MS 93:87 ± 2:98 95:99 ± 0:90 98:38 ± 0:80 94:90 ± 1:73

MR 96:42 ± 2:35 96:66 ± 2:36 99:05 ± 0:63 96:50 ± 0:69

AS 98:30 ± 1:68 94:33 ± 1:90 99:57 ± 0:43 96:25 ± 0:77

MVP 97:23 ± 2:29 96:33 ± 2:17 99:22 ± 0:56 96:64 ± 1:01

Table 6: Summary of automated detection of HVA developed using PCG signals using the same database.

Methods used for feature extraction Classifiers Classes Accuracy (%)

Morphological features extracted from PCG recording [77] SVM N, MS, MR 91.23

Wavelet entropies as features from PCG [86] ANFIS N, PS, MS 98.33

Multilevel basis selection- (MLBS-) based wavelet features
extracted from PCG [76]

SVM N, AS, MR, AR 97.56

Entropy and energy fraction-based features [78] SVM N, TI, PS, MI, MS 97.17

Wavelet and MFCC features obtained from PCG [44] SVM N, AS, MS, MR, MVP 97.90

Magnitude and phase features extracted using SST of PCG [36] Random forest N, AS, MS, MR 95.13

Features extracted using CT of PCG [13] Multiclass composite classifier HC, AS, MS, MR 98.33

DNN [79] WaveNet N, MS, MR, AS, MVP 98.20

Proposed work (features evaluated in SCT domain of PCG) DLKSRN N, MS, MR, AS, MVP 99.24
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classification model yielded an overall accuracy value of
98.33% [13]. Oh et al. [79] have proposed a waveNet-based
DNN model for the classification of HVAs using PCG
recordings and obtained an overall accuracy value of
98.20%. The proposed approach demonstrated higher classi-
fication performance as compared to the existing algorithms
for automated HVA detection. The method reported in [13]
has classified AS, MS, and MR pathologies using PCG. How-
ever, in the present work, we have considered MVP pathol-
ogy along with AS, MS, and MR ailments for the
development of an automated HVA detection system. The
advantages of the proposed HVA detection approach are
given as follows:

(a) The SCT has demonstrated better time-frequency
localization for both normal and pathological PCG
signals as compared to CT

(b) The proposed approach used the nonlinear features
from different frequency components of SCT-based
time-frequency representation of the PCG signal

(c) The DLKSRN based on the ELM-autoencoder and
KSRC is proposed for the classification of HVAs

(d) The proposed approach is tested using the recorded
PCG signals

In this work, the local features from the frequency com-
ponents of the time-frequency representation of the PCG
signal are evaluated. The two-dimensional convolutional
autoencoder [80] can be used for the extraction of learnable
features from the SCT-based time-frequency representation
of the PCG signal for the classification of HVAs. The sparse
residual entropy features [81] and wavelet bispectrum-
based features [82] can be used for the detection of HVAs
from the PCG signal. The convolutional neural network
[83], convolutional attention-based network [84], and other
deep learning methodologies [85] can be used for the
detection of HVAs without using extracted features from
PCG recordings.

4. Conclusion

A novel HVA detection approach using PCG signals is
proposed. This approach used SCT to compute the time-
frequency representation of PCG recording. The nonlinear
features (LN, SEN, and PEN) are computed from the fre-
quency components of time-frequency representation. The
DLKSRN classifier is used to discriminate automatically into
four categories of HVA classes using the extracted features.
The proposed approach demonstrated an average accuracy
of 99.23% and 99.24% using hold-out and 10-fold CV
methods. The proposed approach is also evaluated using
the recorded signal, and the result obtained shows the practi-
cality of the proposed approach. In the future, we intend to
extend this method to detect coronary artery disease and psy-
chological stress using PCG signals. The approach can also be
implemented in real-time for IoMT applications.

Data Availability

The codes and the classification results of the proposed work
are available upon request to the authors.
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