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ABSTRACT

Thermal instability (TI) is a trigger mechanism, which can explain the formation of small condensations through
some regions of the interstellar clouds. The instability criterion for flat geometry approximations has been
investigated in previous works. Here, we focus on spherical perturbations in the spherical clouds. Our goal here
is to examine the conditions for the occurrence of TI through the thermally dominated (i.e., gravitationally stable)
quasi-static spherical interstellar clouds. First, we obtain the profiles of density, temperature, pressure, and
enclosed mass of a symmetric spherical cloud. Then, we use the perturbation method to investigate the linear
regime of instability and find its growth rate. Considering spherical perturbations on the quasi-static spherical
cloud, instead of a thermal and dynamical equilibrium flat cloud, changes the instability criterion so that we can
conclude that sphericalness can increase the occurrence of TI. The results show that in the spherical clouds,
perturbations with shorter wavelengths have more chance to grow via TI (i.e., greater growth rates).

Keywords: ISM: clouds; stars:formation; ISM: evolution; hydrodynamics; thermal instability; spherical perturbations.

*Corresponding author: E-mail: nejadasghar@umz.ac.ir;

Cite as: Nejad-Asghar, M. 2024. “Global Thermal Instability in the Spherical Interstellar Clouds”. Asian
Journal of Research and Reviews in Physics 8 (4):66-72. https://doi.org/10.9734/ajr2p/2024/v8i4176.

https://doi.org/10.9734/ajr2p/2024/v8i4176
https://www.sdiarticle5.com/review-history/127097


Nejad-Asghar; Asian J. Res. Rev. Phys., vol. 8, no. 4, pp. 66-72, 2024; Article no.AJR2P.127097

1 INTRODUCTION
After the pioneer paper of [1], entitled thermal
instability (TI), this subject appeared to be an
important mechanism to explain the formation of density
condensations through interstellar and intergalactic
clouds. This mechanism is used to explain a wide range
of multiphase phenomena from local intra-galactic
situations to large extra-galactic occurrences. For
example, the stability of a uniform star-forming medium
is discussed by [2] including thermal and magnetic
effects. Fukue and Kamaya [3] revisited the effect of
the ion-neutral friction of the two fluids on the growth
of TI. The effect of the application of isobaric TI in
forming the low-mass condensations within molecular
cloud cores is investigated by [4]. Global linear stability
analysis and idealized numerical simulations in global
thermal balance are performed by [5] to understand the
condensation of cold gas from hot/Virial atmospheres,
in particular the intracluster medium. Nejad-Asghar
[6] investigated some conditions for the occurrence
of TI and the formation of pre-condensations through
the outer half of a quasi-static spherical molecular
clump or core. The clumpy wind simulations in
plasma of thermally unstable active galactic nuclei are
presented by [7], obtained by simulating parsec-scale
outflows irradiated and heated by X-rays. Antolin et
al., [8] deduced that during the cooling and driven
by TI, solar coronal rain is produced along the loops.
Gronkiewicz et al., [9] aimed to show the role of TI as
a constraint for warm, optically thick X-ray coronas in
active galactic nuclei. Recently, [10] determined the
effect of background flow on TI in cylindrical magnetic
field configurations.

Due to the importance of TI as a cold gas formation
mechanism, here, we investigate the examination for
the occurrence of linear TI in the spherical interstellar
clouds. The most important parameter for the
occurrence of TI is the net cooling function Ω(ρ, T ). In a
local thermal and dynamical equilibrium flat clouds, the
isobaric instability criterion is ΩT − ( ρ0

T0
)Ωρ < 0, where

Ωρ ≡ (∂Ω/∂ρ)T and ΩT ≡ (∂Ω/∂T )ρ are evaluated in
equilibrium state. Using the flat plane perturbations
to investigate local TI can be appropriate in some
interstellar gases, but, many interstellar clouds have a
spherical structure. Thus, the flat plane approximation
is not completely correct for global TI, and it is better to
use spherical perturbations.

For this purpose, in § 2 we consider thermally
equilibrium models for quasi-static spherically

symmetric clouds. The effect of spherical perturbations
is investigated in §3. Section 4 is devoted to summary
and conclusions.

2 THERMALLY EQUILIBRIUM
MODELS

In the spherical polar coordinates, the usual
hydrodynamic equations for spherically symmetric
thermally dominated clouds are
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kB
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ρT, (2.5)

where mass density ρ, the enclosed massM , radial flow
velocity u, thermal gas pressure p and temperature T
depend on the radius r and time t; G is the gravitational
constant, γ is the heat capacity ratio, and kB , µ and
mH are Boltzmann constant, the mean particle weight
and the hydrogen mass, respectively. The net cooling
function is presented by Ω(ρ, T ) = ρ2Λ(T ) − ρΓ where
Λ and Γ are the cooling and heating rates, respectively.

Determination of the net cooling function Ω for optically
thick and/or optically thin interstellar gas is a complex
non-local thermodynamic equilibrium radiative transfer
problem. For example, [4] used the results of [11] to
parameterize the cooling rate for molecular clouds as
∝ (T/10 K)β where the parameter β and proportional
constant are given in the Fig. 1 of his paper. For
heating mechanisms, he considered different heating
mechanisms such as heating due to cosmic rays (e.g.,
[12]), dissipation of magnetic energy via ambipolar
diffusion (e.g., [13]), and so on. As another example,
[14] used the data of [15] to approximate an analytic
function for the cooling rate in the circumgalactic
medium as

Λ(T ) = 3.9× 1026 × 10Θ(log(T/105 K) erg cm3 g−2 s−1,
(2.6)

where the exponent is

Θ(x) = 0.4x− 3 +
5.2

ex+0.08 + e−1.5(x+0.08)
. (2.7)
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For hating rate, they used a constant value Γ =
0.06 erg g−1 s−1, which is expected from photoelectric
explosion of electrons from dust grains.

In the stationary (∂/∂t = 0) quasi-static (u → 0)
thermally equilibrium state, the net cooling function
Ω(ρ, T ) is assumed to be zero at each radius r
(i.e., locally thermal balance). This thermal balance
(i.e., Ω(ρ, T ) = 0) leads to a relation between the
temperature T and density ρ at each radius. Here,
we use a parametric relation between density and
temperature as T = ρη, where η is a constant
parameter. We consider three state-of-the-art models
for temperature change according to the density
decrease of the cloud: (i) decreasing temperature by
η > 0, (ii) increasing temperature by η > 0, and
constant temperature by η = 0.

Knowing the relation between temperature and density,
equation (2.5) leads us to determine the gradient of
pressure as

dp

dr
=

kB
µmH

(
T + ρ

dT

dρ

)
dρ

dr
, (2.8)

so that the stationary (∂/∂t = 0) quasi-static (u → 0)
state of the momentum equation (2.2) becomes

dρ

dr
= −µmHG

kB

Mρ

r2
(
T + ρ dT

dρ

) . (2.9)

We use the non-dimensional quantities ρ̃ ≡ ρ/ρr,
T̃ ≡ T/Tr, r̃ ≡ r/( kBTr/µmH

4πGρr
)
1
2 , and M̃ ≡

M/4π( kBTr/µmH
4πGρr

)
3
2 ρr, where ρr and Tr are the

reference density and temperature, respectively. In this
way, the equations (2.3) and (2.9) become

dM̃

dr̃
= r̃2ρ̃, (2.10)

dρ̃

dr̃
= − M̃ρ̃1−η

r̃2T̃ (1 + η)
, (2.11)

where the thermal balance relation T̃ = ρ̃η is used.
The differential equations (2.10) and (2.11) can be
integrated numerically (e.g., with Runge-Kutta method),
from the origin r̃ = 0 with the boundary conditions
ρ̃(0) = ρ̃c and M̃(0) = 0, where ρ̃c is the non-
dimensional central density. The density profiles of
some models with different values of the parameter η
are depicted in Fig. 1.

3 PERTURBATIONS IN THE
CLOUD

The quasi-static spherical interstellar clouds with low-
density contrast are mainly confined by the external
pressure. If the density contrast exceeds a critical value
(e.g., Bonnor-Ebert sphere), the cloud will have gravity-
dominated configurations, and an arbitrarily small initial
perturbation in the structure grows rapidly with time,
leading ultimately to collapse. Here, we turn our
attention to the gravitationally stable cloud with masses
less than the critical value of the Bonnor-Ebert sphere.
If perturbations occur in the structure of these clouds,
the thermal effects will be important for growth (i.e.,
thermal instability) or decay (i.e., thermal stability) of
them. To investigate this effect, we split each variable
into unperturbed and perturbed components; the latter
is indicated by subscript ’1’. We perform the linear
perturbation analysis, with time and radius Fourier
expansions, A1(r, t) = Ad1 exp(ωt+ ikr), on the thermal
equilibrium spherically symmetric cloud (in which its
variables are denoted by subscript ’0’). Time evolution
in the non-linear regime is out of the scope of this paper.
It is of great interest to derive the growth/decay rate,
<(ω), for the range of suitable wavelengths, 2π/k, at
different radii r.

To investigate the thermal stability/instability of the
medium, the linear perturbation method can be used.
In this method, a perturbation is applied to the thermal
equilibrium medium, and only the first order of domains
is considered. If <(ω) is positive, the gas will
be thermally unstable, and if <(ω) is negative, the
perturbation will be decayed so that the gas will be
thermally stable. In this way, by using perturbations
of the form exp(ωt + ikr) for density, radial velocity,
enclosed mass, and pressure with amplitudes ρd1, ud1,
Md

1 , and pd1, respectively, the equations (2.1)-(2.5)
can be linearized by repeated use of the unperturbed
equations as follows

(ω) ρd1 +
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2
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Fig. 1. The thermally equilibrium profiles of non-dimensional density, temperature, pressure, and
enclosed mass for a quasi-static spherically symmetric interstellar cloud. The solid black curves are for

η = 0, blue curves are for η = 0.4, and red ones are for η = −0.4.
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perturbations, respectively [1], and primes denote d
dr

. Now, if we set the determinant of coefficients matrix equal
to zero, we obtain a third degree polynomial characteristic equation as follows
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and C2 = νT . These coefficients depend on the wavenumber k, and must be evaluated for different radii r.

The simplest case is one in which η = 0. Here, we turn our attention to this case, and other models, which depend
strictly on the choosing of the net cooling function, will be considered in the subsequent research. In this case
(i.e., η = 0), the density and pressure profiles can be locally (i.e., regions of interest around each radius far from
r ≈ 0) approximated as inverse square law, p0 &ρ0 ∝ 1

r2
, and the enclosed mass increases linearly as M ∝ r.

These results can be deduced from Fig. 1. In this way, the coefficients of the characteristic equation (3.5) reduce
to

C0 =
k2c̄2

γ
(νT − νρ)− ik

2c̄2νT
γr

− 2c̄2νT
γr2

, (3.8)

C1 = k2c̄2 − ik 2c̄2

r
− 2c̄2

γr2
, (3.9)

and C2 = νT , where c̄ is the sound speed. Note that the terms including 1/r and 1/r2 appear because we used the
spherical coordinates to describe the cloud. At very large radii, where the sphericalness is negligible (i.e. r →∞),
these coefficients reduce to the coefficients of the characteristic equation of the well-known pioneered work of [1].
Using non-dimensional quantities

y ≡ ω

kc
, σT ≡

νT
kc
, σρ ≡

νρ
kc
, λ ≡ 1

kr
, (3.10)

the characteristic equation can be written as
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2 +
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y +
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= 0. (3.11)
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Fig. 2. Regions of TI in the σT -σρ plane with λ = 0, 0.05 and 0.1 for γ = 5/3. The stable regions are
depicted by hatch-patters of diagonal cross for λ = 0, light vertical lines for λ = 0.05, and light horizontal

lines for λ = 0.1. In each case of λ, other regions are thermally unstable.
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Here, we use the Laguerre method (e.g., [16]) to find
numerically the roots of the characteristic equation
(3.11). The results for instability in the σT -σρ plane
are shown in Fig. 2. Note that λ = 0 corresponds to
the results of [1], with the usual isobaric and isentropic
instability criteria as νρ > νT , and νρ < −(γ − 1)νT ,
respectively. The results show that increasing of λ
(i.e., perturbations with longer wavelengths at each
radius r) decreases the stability region in the σT -σρ
plane. The importance of linear TI can be expressed
by the growth rate, <(ω), of unstable regions through
the σT -σρ plane. Finding the roots of (3.11) for different
values of λ shows that <(y/λ) is a decreasing function
of λ. Thus, at each radial position r, perturbations
with shorter wavelengths (i.e., smaller λ) have greater
growth rates, which corresponds to more chance for
thermally unstable growth.

4 SUMMARY AND CONCLUSIONS

TI is an important trigger mechanism that can explain
the formation of density condensations through some
regions of interstellar clouds and circumgalactic
medium. In this paper, we turned our attention to a
simple model as a spherical cloud and investigated
the occurrence of linear TI through it. First, we
surveyed thermally equilibrium models of the quasi-
static spherically symmetric clouds; the radial profiles
of density, temperature, pressure, and enclosed mass
are shown in Fig.1. After that, we used the perturbation
method to investigate the occurrence and growth rates
of linear TI through these equilibrium models.

To represent the thermal balance case, a parametric
relation between density and temperature as T = ρη is
used. Fig. 1 shows that in all models, density decreases
with increasing radius, but its slope depends on the
parameter η. The same behavior can be seen in the
pressure profile. For the models that temperature
increases with density increase (η > 0), the pressure
drop versus radius is more than the models that
temperature decreases with density increase (η < 0).

To investigate TI, we considered the simplest case
in which η = 0. In this case, the characteristic
equation (3.5) reduces to a simple form (3.11), which
by ignorance of the sphericalness (i.e., r → ∞ so that
λ → 0), will be reduced to the characteristic equation
of the well-known work of Field (1965). The Fig 2
shows the thermally unstable regions in theσT -σρ plane;
considering the sphericalness of the cores (i.e., greater

values of λ) results in increasing the instability regions
in this plane. Also, comparing the real parts of the roots
of (3.11) for different values of λ demonstrates that at
each radius r, perturbations with smaller wavelengths
become more thermally unstable (i.e., have greater
growth rates) than longer ones.
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