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Reduning Injection (RDNI) is a traditional Chinese medicine formula indicated for the treatment of inflammatory diseases.
However, the molecular mechanism of RDNI is unclear. The information of RDNI ingredients was collected from previous
studies. Targets of them were obtained by data mining and molecular docking. The information of targets and related pathways
was collected in UniProt and KEGG. Networks were constructed and analyzed by Cytoscape to identify key compounds, targets,
and pathways. Data mining and molecular docking identified 11 compounds, 84 targets, and 201 pathways that are related to
the anti-inflammatory activity of RDNI. Network analysis identified two key compounds (caffeic acid and ferulic acid), five key
targets (Bcl-2, eNOS, PTGS2, PPARA, and MMPs), and four key pathways (estrogen signaling pathway, PI3K-AKT signaling
pathway, cGMP-PKG signaling pathway, and calcium signaling pathway) which would play critical roles in the treatment of
inflammatory diseases by RDNI. The cross-talks among pathways provided a deeper understanding of anti-inflammatory effect
of RDNI. RDNI is capable of regulating multiple biological processes and treating inflammation at a systems level. Network
pharmacology is a practical approach to explore the therapeutic mechanism of TCM for complex disease.

1. Introduction

Inflammation is regarded as a kind of congenital immunity
as well as the basis of various physiological and pathological
processes, and it can affect human health and living quality
in many respects [1–4]. Five typical symptoms of inflamma-
tion are fever, pain, redness, swelling, and loss of function [5].
Acute inflammation is the body’s initial response to harmful
stimuli such as burns, pathogen infection, and toxins [6, 7].
Chronic inflammation is a biological progress that leads to
multiple diseases such as hay fever, periodontitis, atheroscle-
rosis, rheumatoid arthritis, and even cancer [8–10]. There are
at present more than one hundred FDA-approved anti-

inflammatory drugs, which are classified into steroid and
nonsteroidal anti-inflammatory drugs [11–13]. However,
these drugs are related to various side effects including irre-
versible sensor neural hearing loss [14], gastrointestinal
symptoms (such as dyspepsia, gastrointestinal bleeds, or even
gastrointestinal perforations) [15], and side effects on carti-
lage metabolism. [16]

Traditional Chinese medicines (TCMs) have been used to
treat various diseases including inflammation for a long time.
For example, Reduning Injection [17], Bi-Qi capsule [18],
and Shuanghuanglian injection [19] are widely used in China
for treating inflammation. The validity and safety of these
TCM formulas are already verified by thousands of years of
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clinical applications. Some of them have been studied in
modern approaches, and their effectiveness and molecular
mechanism were demonstrated by the results [17, 20, 21].
TCM can regulate multiple pathogenic progresses so as to
cure diseases effectively and completely in a holistic manner
[19, 20, 22]. However, the ingredients of TCM are compli-
cated and can interact with multiple targets. It is difficult to
elucidate the mechanism of the action (MOA) of TCM by
traditional pharmacological methods.

Network pharmacology provides frameworks to under-
stand how regulation arises from the interactions between
cellular components, and it is considered the next para-
digm in drug development [23]. By using network phar-
macology approaches, we can build complex networks on
the basis of disease-related biological progresses and adopt
network analysis to obtain insights into the pharmacolog-
ical mechanism. These methods can provide theoretical
basis and guidance for the development of multitarget
drugs, and they have been used to investigate the patho-
genesis of several diseases [22, 24, 25]. Reduning Injection
(RDNI) is used for the treatment of inflammatory diseases,
such as upper respiratory tract infection and acute bron-
chitis [26–28], while the molecular mechanism of its ther-
apeutic function is unclear. Three herbs contained in
RDNI are wildly used to cure inflammation-related dis-
eases, namely, Lonicera japonica Thunb. (honeysuckle,
Jinyinhua), Gardenia jasminoides Ellis. (cape jasmine,
Zhizi), and Artemisia annua L. (sweet wormwood, Qin-
ghao) [29–31]. In our previous works, the main ingredi-
ents of RDNI and their activities against inflammation
have been explored [17, 22, 27]. In this work, data mining
and molecular docking were used to predict the targets of
RDNI compounds and their metabolites. A compound-
target network and a target-pathway network were con-
structed. Key targets and pathways were identified by net-
work analysis and literature consulting. The cross-talks
between inflammation-related pathways were also dis-
cussed. The results indicate that the molecular mechanism
of the anti-inflammatory function of RDNI can be discov-
ered by computational modeling, which provides a practi-
cal approach to study the MOA of TCM prescription.

2. Methods

2.1. Collection of RDNI Compounds. Nine ingredients with
measurable content of RDNI have been identified in previous
works [32–38]. Four metabolites of these ingredients were
gathered by literature mining [39–41]. The information and
3D structures of these 13 compounds were downloaded from
PubChem (http://pubchem.ncbi.nlm.nih.gov) [42], a chemi-
cal database of authoritative sources.

2.2. Target Mining. The targets of RDNI compounds and
metabolites were collected by database searching and molec-
ular docking. Four databases were used in this step, namely,
PubChem, Traditional Chinese Medicine Systems Pharma-
cology Database and Analysis Platform (TCMSP, http://lsp
.nwu.edu.cn/tcmsp.php) [43], Binding DataBase (Bin-
dingDB, http://www.bindingdb.org/bind/index.jsp) [44, 45],

and DrugBank (http://www.drugbank.ca) [46]. TCMSP is a
systems pharmacology platform that provides the relation-
ships between Chinese herbal medicines and their targets.
BindingDB can provide measured binding affinities between
compounds and their targets. First, CID codes in PubChem
were used to find the records of RDNI compounds, and their
targets were obtained in the “Biological Test Results.” Sec-
ond, the records of compounds in TCMSP were retrieved
by the CAS registry number, and the targets’ information
was collected from the “Related Targets” section. Finally,
the tool “Find my Compound’s Target” in BindingDB was
used to screen targets of RDNI compounds. Targets gathered
in PubChem, BindingDB, and TCMSP are recorded in Sup-
plementary Table S1.

The DrugBank database can provide detailed drug data
and comprehensive drug target information. There are 126
FDA-approved anti-inflammatory drugs in DrugBank [46].
Their targets were collected, and known protein structures
were downloaded from the RSCB protein data bank
(http://www.rcsb.org). Molecular docking was adopted to
evaluate the binding affinity between each compound and
target by Autodock 4.2.6 [47]. The energy grid was a 30
× 30 × 30Å cube centered on the occupied space of the
original ligand with a spacing of 0.375Å between the grid
points. The Lamarckian genetic algorithm (LGA) was used
to optimize the conformation of compound in the binding
pocket. The parameters for LGA were listed as follows: the
number of individuals in population, maximum number of
energy evaluations, and the maximum number of genera-
tions, and the rate of gene mutation was set as 150, 2:5
× 106, 2:7 × 104, and 0.02, respectively. Other parameters
were set to default. The docking results were sorted
according to the binding energy, and the proteins with
binding energy lower than -8.18 kcal/mol (the threshold
for inhibition constant was 1μM) were regarded as a tar-
get of the corresponding compound.

2.3. Network Construction. On the basis of compound-
target interaction obtained in the previous step, the
compound-target network (CTN) was constructed and
visualized by Cytoscape version 3.6.1 [48]. Key targets
and main active components of RDNI for treating inflam-
mation were predicted by degree centrality, betweenness
centrality, and closeness centrality. These network topolog-
ical parameters were calculated by the NetworkAnalyzer
plugin [49]. Targets that meet two screening criteria were
regarded as important targets: their degree centralities
were in the top ten of all involved targets; their between-
ness centralities and closeness centralities were both larger
than the average value of all involved targets in CTN
(Supplementary Table S2). Key targets were selected from
these important targets after assessment of their locations
in different pathways and their regulation relationships
with upstream and downstream targets. The molecular
functions and related biological processes of targets were
retrieved from UniProt (http://www.uniprot.org) [50].

The related pathways (Supplementary Table S3) of RDNI
targets were collected from the Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.kegg.jp) [51]. The target-
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pathway network (TPN) was then constructed and visualized
by Cytoscape. Key pathways of RDNI were obtained on the
basis of TPN and literature consulting. Twelve pathways
were found to have close relationships with inflammation,
and they also had high degree centralities (>6) as well as
high betweenness centralities (>average value) in the TPN.
Four of the twelve pathways were excluded because they do
not represent a specific biological process. Another two
pathways were excluded because they do not have high
closeness centralities (>average value) (Supplementary
Table S4). The remaining six pathways were regarded as
important pathways of RDNI, and a compound-target-
pathway network (CTPN) was constructed by Cytoscape.
Four key pathways were selected from important pathways
for their close relationships with inflammatory processes.
Graphs of key pathways were downloaded from KEGG.
Targets of RDNI were marked in red by KEGG mapping
tools.

A cross-talk network was constructed to visualize the
cross-talks among key pathways and other three pathways,
which were closely associated with both the four key path-
ways and inflammatory processes.

3. Results and Discussion

3.1. Analysis of Compound-Target Network. The CAS entry,
PubChem CID, molecular weight, and content in RDNI of
the RDNI compounds are recorded in Table 1. Sixty-seven
known targets for 9 compounds and 2 metabolites of RDNI
were found in PubChem, BindingDB, and TCMSP (Supple-
mentary Table S1). One hundred and seventeen targets are
associated with FDA-approved anti-inflammatory drugs
according to DrugBank. Sixty-four targets have 3D
structures and can be utilized for molecular docking.
Nineteen targets were obtained by molecular docking
(Table 2). In total, eighty-four targets were obtained after

integration and deduplication. The compound-target
network (Figure 1) contains 95 nodes (11 compounds and
84 targets) and 144 edges. Edges in this network reflect the
diverse regulations of RDNI for inflammation-related
processes.

These compounds and their metabolites have complex
interactions with cellular targets. First, caffeic acid (CAA)
and its metabolite ferulic acid (FA) have wide influences
on inflammatory processes. CAA has 36 targets, and FA
has 32 targets, with 20 targets in common. Many targets
are related to the regulation of inflammatory process such
as arachidonate 5-lipoxygenase (ALOX5, UniProt:
P09917), heat shock protein HSP 90-alpha (HSP90AA1,
UniProt: P07900), and prostaglandin G/H synthase 2
(PTGS2, UniProt: P35354). Second, isochlorogenic acid A
(IsoA), isochlorogenic acid B (IsoB), and isochlorogenic
acid C (IsoC) have 13, 11, and 9 targets, respectively. Most
proteins have explicit relationship with inflammation
because they are targets of FDA-approved anti-
inflammatory drugs. Geniposide (Gen) and its metabolite
genipin (Gep) have 12 and 9 targets, respectively, while
only one target has affinity with both of them. Third,
secoxyloganin (Sec), chlorogenic acid (CGA), crypto-
chlorogenic acid (4CQA), and neochlorogenic acid
(5CQA) have 2, 4, 6, and 6 targets, respectively. They
are also important to the therapeutic effect of RDNI as
the high content.

Eight targets, namely, thiopurine S-methyl transferase
(TPMT, UniProt: P51580), carbonic anhydrase 2 (CA2, Uni-
Prot: P00918), amyloid-beta A4 protein (APP, UniProt:
P05067), progesterone receptor (PGR, UniProt: P06401),
membrane associated phospholipase A2 (PLA2G2A, Uni-
Prot: P14555), 5′-AMP-activated protein kinase subunit
beta-2 (PRKAB2, UniProt: O43741), aldose reductase
(AKR1B1, UniProt: P15121), and PTGS2 would bind with
more than 3 compounds of RDNI. Four proteins, namely,

Table 1: Ingredients and metabolites of RDNI.

Compound Abbreviation Content in injection (mg/ml) MW CID CAS

Neochlorogenic acid 5CQA 2.51 354.31 5280633 906-33-2

Chlorogenic acid CGA 4.36 354.31 1794427 327-97-9

Cryptochlorogenic acid 4CQA 2.01 354.31 9798666 905-99-7

Caffeic acid CAA 0.09 180.15 689043 331-39-5

Isochlorogenic acid B IsoB 0.33 516.45 5281780 14534-61-3

Isochlorogenic acid A IsoA 0.19 516.45 6474310 89919-62-0

Isochlorogenic acid C IsoC 0.34 516.45 6474309 57378-72-0

Geniposide Gen 8.16 404.36 107848 169799-41-1

Secoxyloganin Sec 0.81 404.36 162868 58822-47-2

Ferulic acid∗ FA NA 194.18 445858 537-98-4

Dihydroferulic acid∗ DFA NA 196.20 17865499 NA

Genipin∗ Gep NA 226.22 442424 6902-77-8

3′-Hydroxycinnamic acid∗ NA NA 164.16 637541 588-30-7

∗Ferulic acid, dihydroferulic acid, genipin, and 3′-hydroxycinnamic acid are metabolite of caffeic acid, caffeic acid, geniposide, and caffeic acid, respectively.

3BioMed Research International



histamine H1 receptor (HRH1, UniProt: P35367), peroxi-
some proliferator-activated receptor gamma (PPARG, Uni-
Prot: P37231), prostaglandin G/H synthase 1 (PTGS1,
UniProt: P23219), and FAD-linked sulfhydryl oxidase ALR
(GFER, UniProt: P55789), can be targeted by 3 compounds
of RDNI. These top twelve targets screened by degree central-
ity have high betweenness centralities (>average value).
Seven of them have high closeness centralities (>average
value). Other targets can interact with one or two compounds

of RDNI. Many of these targets would play significant roles in
regulating inflammatory processes.

For example, PTGS2 is the target of CGA, 4CQA, CAA,
FA, and Gep. It is the major enzyme responsible for the pro-
duction of inflammatory prostaglandins and expresses in the
inflammatory process only [17]. First, the prostaglandin E2
(PGE2) synthesized by PTGS2 can promote the production
of multifarious inflammatory factors, such as interleukin-10
(IL-10, UniProt: P22301) [52], interleukin-8 (IL-8, UniProt:

Table 2: Targets obtained by molecular docking.

Compound Target UniProt ID Binding energy (kcal/mol)

4CQA

Progesterone receptor P06401 -9.15

5′-AMP-activated protein kinase subunit beta-2 O43741 -9.06

Thiopurine S-methyltransferase P51580 -8.98

Complement C1q subcomponent subunit C P02747 -8.51

Histamine H1 receptor P35367 -8.42

5CQA

Progesterone receptor P06401 -9.05

5′-AMP-activated protein kinase subunit beta-2 O43741 -8.69

Phospholipase A2, membrane associated P14555 -8.56

Glutathione S-transferase A2 P09210 -8.4

Retinoic acid receptor alpha P10276 -8.38

CGA

Thiopurine S-methyltransferase P51580 -8.74

Androgen receptor P10275 -8.32

Phospholipase A2, membrane associated P14555 -8.28

Gen Thiopurine S-methyltransferase P51580 -8.41

Gep Corticosteroid 11-beta-dehydrogenase isozyme 1 P28845 -8.19

IsoA

Phospholipase A2, membrane associated P14555 -11.82

5′-AMP-activated protein kinase subunit beta-2 O43741 -10.32

Thiopurine S-methyltransferase P51580 -10.24

Peroxisome proliferator-activated receptor gamma P37231 -9.08

Glucocorticoid receptor P04150 -9.02

Fatty acid-binding protein, intestinal P12104 -8.82

Aldose reductase P15121 -8.66

Histamine H1 receptor P35367 -8.51

Nitric oxide synthase, endothelial P29474 -8.28

IsoB

Progesterone receptor P06401 -10.62

Thiopurine S-methyltransferase P51580 -10.52

Peroxisome proliferator-activated receptor gamma P37231 -9.18

Prostaglandin reductase 2 Q8N8N7 -8.91

Peroxisome proliferator-activated receptor alpha Q07869 -8.89

Glucocorticoid receptor P04150 -8.29

IsoC

5′-AMP-activated protein kinase subunit beta-2 O43741 -10.61

Progesterone receptor P06401 -10.4

Phospholipase A2, membrane associated P14555 -9.97

Peroxisome proliferator-activated receptor gamma P37231 -9.97

Retinoic acid receptor beta P10826 -9.46

Thiopurine S-methyltransferase P51580 -8.89

Myeloperoxidase P05164 -8.54

Histamine H1 receptor P35367 -8.29
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P10145), and tumor necrosis factor alpha (TNFα, UniProt:
P01375) [53]. Second, PGE2 can regulate the production of
adenosine 3′,5′-cyclic phosphate (cAMP) and the expres-
sions of inflammatory genes which are regulated by this sec-
ond messenger [54]. Third, PGE2 is also responsible for
some inflammatory symptoms, such as cough [55] and
airflow obstruction, because it can regulate the production
of mucin in the respiratory tract [56]. Fourth, PTGS2 can
influence inflammatory targets such as 72 kDa type IV col-
lagenase (MMP2, UniProt: P08253), matrix metallopro-
teinase 9 (MMP9, UniProt: P14780), and nitric-oxide
synthase, endothelial (eNOS, UniProt: P29474) [57, 58].
Finally, PTGS2 is also the key regulatory factor of differen-
tiation of T helper cell 17 (Th17) in inflammatory pro-
cesses [59].

Apoptosis regulator Bcl-2 (Bcl-2, UniProt: P10415) is
the target of Gen. After binding with Bcl-2-like protein 1
(Bcl-xl, UniProt: P07817), Bcl-2 can regulate the expres-
sion of caspase 1 (CASP1, UniProt: P29466) by inhibiting
NLR family protein LRR and PYD domain-containing
protein 1 (NALP1, UniProt: Q9C00). CASP1 participates
in the dissociation of substrates involved in cell apoptosis
and inflammation, and it is capable of catalyzing the mat-
uration and secretion of interleukin-1 beta (IL-1β, Uni-
Prot: P01584) [60, 61]. NALP1 participates in the
process of inflammation by activating the secretion of high

mobility group protein B1 (HMGB1, UniProt: P09429).
Bcl-2 is also associated with particulate matter-induced
pneumonia and allergic airway inflammation by regulating
the apoptosis process of inflammatory cells [62, 63].

FA and IsoA can bind with eNOS and then regulate
the production of nitric oxide (NO), which plays an
important role in inflammatory processes [64]. The over-
production of NO participates in inflammatory response
by regulating a lot of biological processes, such as the syn-
thesis of iron-nitrite complex, the inhibition of DNA
ligase, the promotion of plasma exudation, and edema for-
mation [65, 66]. The protective effect of eNOS against sys-
temic inflammation is also proved [67].

Peroxisome proliferator-activated receptor alpha
(PPARA, UniProt: Q07869) is a member of nuclear hor-
mone receptor superfamily and a target of IsoB. It partic-
ipates in the regulation of lipid metabolism, adipocyte
differentiation, and inflammatory process by activating
related transcription factors [68]. Interstitial collagenase
(MMP1, UniProt: P03956), MMP2, and MMP9 are both
targets of FA and IsoA. MMPs can mediate the pretreat-
ment of TNFα and therefore participate in regulation of
inflammatory processes [69]. Induced myeloid leukemia
cell differentiation protein Mcl-1 (Mcl-1, UniProt:
Q07820) is a target of CAA. It is involved in cell survival,
cell apoptosis, and inflammation [70]. Therefore,
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Figure 1: Compound-target network of RDNI. Red squares represent compounds and their metabolites of RDNI, and blue ellipses represent
targets. The interaction between compound and target is represented by gray edges. The size of nodes varies with the degree centrality in this
network.
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compounds of RDNI can regulate the inflammatory pro-
cess through complex interactions with inflammation-
associated targets.

3.2. Analysis of Target-Pathway Network. Eighty targets of
RDNI are involved in 201 pathways according to KEGG
(Supplementary Table S2). The target-pathway network
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Figure 2: Target-pathway network (a) and compound-target-pathway network (b). Red squares, blue ellipses, and yellow triangles represent
small compounds, targets, and pathways, respectively. Gray edges correspond to the relationships between compounds, targets, and pathways.
The size of a node is directly proportional to degree centrality.
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(Figure 2(a)) contains 281 nodes (80 targets and 201
pathways) and 577 edges. The TPN shows the complexity
and diversity of regulatory effects of RDNI on human
biological processes. Twelve pathways would have close
relationship with inflammation since they have large degree
centrality (>6). Six pathways are excluded because they do
not represent a specific biological process or do not have
high closeness centralities, namely, metabolic pathways,
pathways in cancer, neuroactive ligand-receptor interaction,
nitrogen metabolism, serotonergic synapse, and
microRNAs in cancer. The rest 6 pathways constitute the
compound-target-pathway network (Figure 2(b)) by linking
32 targets and 10 compounds. The CTPN contains 48
nodes and 102 edges. Figures 2(a) and 2(b) reflect the
multiple regulatory functions of RDNI through different
pathways. Four of them were found to have high
correlation with the regulation of inflammatory response,

namely, estrogen signaling pathway (hsa04915), PI3K-AKT
signaling pathway (hsa04151), cGMP-PKG signaling
pathway (hsa04022), and calcium signaling pathway
(hsa04020).

The estrogen signaling pathway (Figure 3(a)) contains
the most targets of RDNI than other pathways. It regulates
many physiological processes such as reproduction, cardio-
vascular protection, cellular homeostasis, and inflammatory
metabolic process [71–73]. Eight compounds (CAA, FA,
4CQA, 5CQA, IsoA, IsoB, IsoC, and Gen) can interact with
eleven targets (P00533, P06401, P07900, P08238, P08253,
P10276, P10415, P14780, P17612, P29474, and Q92731) in
this pathway. First, CAA can regulate the estrogen signaling
pathway by binding with HSP90 and modulate estrogen
receptor beta (ESR2, UniProt: Q92731). Second, HSP90 is
involved in the formation process of the complex of estrogen
receptor (ER) and nuclear receptor coactivator (CoA). The

(a)

PI3K−AKT signaling pathway 

(b)

(c)

cGMP−PKG signaling pathway

P29474−FA,IsoA

P25248−FA

P09813−CAA,FA
P18089−FA
P18825−CAA

P07550−CAA,FA
P08588−CAA

(d)

Figure 3: Diagram of the estrogen signaling pathway (a), PI3K-AKT signaling pathway (b), calcium signaling pathway (c), and cGMP-PKG
signaling pathway (d). Names of each pathway are labeled in the upper left corner. The origin pathway images are downloaded from KEGG.
The targets of RDNI are marked in red. UniProt ID of a specific target and the compound(s) binding with it are labeled nearby. Permission is
granted by Kanehisa Laboratories to use these KEGG pathway map images.
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ER-CoA complex can activate the expression of ER-
dependent genes, which participate in the regulation of cell
apoptosis and inflammation, such as Bcl-2, PGR, and retinoic
acid receptor alpha (RARA, UniProt: P10276). Third,
MMP2, MMP9, ER, and epidermal growth factor receptor
(EGFR, UniProt: P00533) can regulate second messengers
that play important roles in other inflammation-related path-
ways, such as cAMP, Ca2+, and phosphatidylinositol-3,4,5-
trisphosphate (PIP3). The compounds of RDNI can regulate
the inflammatory process by regulating the estrogen signal-
ing pathway in many ways.

The PI3K-AKT signaling pathway (Figure 3(b)) is
responsible for multiple fundamental cellular functions by
the phosphorylation of serine/threonine kinase (AKT) [74–
76]. It can also regulate inflammatory processes in many
approaches [77]. Five RDNI compounds (CAA, FA, CGA,
IsoA, and Gen) have influences on seven targets of this path-
way (P00533, P07900, P08238, P10415, P13612, P29474, and
Q07820). CAA can inhibit EGFR and then regulate the pro-
duction of PIP3. PIP3, as well as the complex of HSP90 and
Hsp90 cochaperone Cdc37 (UniProt: Q16543), can activate
AKT [78, 79]. Activation of AKT leads to phosphorylation
of downstream targets which are associated with the inflam-
matory process. For example, the phosphorylation of inhibi-
tor of nuclear factor kappa-B kinase (IKK) promotes the
dissociation of the complex of NF-kappa-B inhibitor alpha
(IκBα) and nuclear factor kappa-B (NF-κB), and then, NF-
κB is released [80]. The phosphorylation of eNOS has an
impact on the production of NO in the body. The phosphor-
ylation of cyclic AMP-responsive element-binding protein
(CREB) activates the expressions of Bcl-2 and Mcl-1. The
phosphorylation of Bcl2-associated agonist of cell death
(BAD, UniProt: Q92934) inhibits the expression of Bcl-2

and Bcl-xl. The phosphorylation of the complex of retinoic
acid receptor RXR-alpha (RXRA, UniProt: P19793) and
nuclear receptor subfamily 4 group A member 1 (NUR77)
inhibits the expression of Bcl-2. Compounds of RDNI, such
as FA, IsoA, and Gen, can also regulate these
inflammation-related targets directly.

The calcium signaling pathway (Figure 3(c)) maintains
the equilibrium of calcium concentration in the body and
therefore mediates signal transduction in cellular and physi-
ological processes [81, 82]. Five compounds of RDNI (CAA,
FA, IsoA, IsoC, and 4CQA) would bind with seven targets of
this pathway (P00533, P07550, P08588, P17612, P29474,
P35348, and P35367). The impact of these compounds on
the calcium signaling pathway is reflected in the regulation
of phospholipase C (PLC). First, CAA regulates PLCγ by
inhibiting EGFR in the calcium signaling pathway. Second,
HRH1, a subtype of G-protein coupled receptor (GPCR), is
the target of FA, IsoA, 4CQA, and IsoC and activates PLCβ.
Third, cAMP is the activator of PLCε and also regulates
PLCδ by regulating Ca2+ concentration. PLC produces D-
myo-inositol 1,4,5-trisphosphate (IP3) and diacylglycerol
(DAG); then, IP3 and DAG activate protein kinase C
(PKC). PKC can regulate lipopolysaccharide-induced macro-
phage functions involved in inflammation [83]. It can also
participate in inflammatory response by regulating NF-κB-
induced gene expression through the IL-1α-dependent
induction of IκBα [84].

The cGMP-PKG signaling pathway (Figure 3(d)) regu-
lates a broad array of physiologic processes, such as vascular
smooth muscle contraction, cell apoptosis, and inflammation
[85]. The regulatory function is implemented through the
phosphorylation function of cGMP-dependent protein
kinase (PKG), a downstream protein of 3′,5′-cyclic GMP

PTGS2IL−1𝛽MMPs TNF𝛼 IL−6I𝜅B𝛼

cAMP signaling pathway

GPCR−Epac−Rap1−PI3K

ER−Ras−ERK

Estrogen signaling pathway

EGFR−Ras−ERK

ER−(c−Src)−PI3K
CALM−AC−cAMP

ER−mGluR1a−PLC−IP3R

PLC−DAG−AC

ER−mGluR1a−PLC−AC

Calcium signaling pathway

𝛽AR−eNOS−cGMP−PLB/IP3R

𝛽AR−cGMP−Raf1

GPCR−PLC−IP3R𝛽
Ca −AC

GPCR−PKA−PLB/RyR2

cGMP−PKG signaling pathway

GPCR−Epac−PLC𝜀

GPCR−PKA−IB𝛼𝜅

PI3K−AKT signaling pathway

ER−(Bcl−2)−IKK
ERK−CREB−(Bcl−2)−IKK

NF−KAPPA B signaling pathway

PTK−PLC−PKC−IKK

RTK−Ras−ERK

RTK−eNOS−cGMP

MAPK signaling pathway

GPCR−Epac−ERK

Figure 4: Cross-talks between seven primary regulatory pathways of RDNI for inflammation. Gray edge represents that the pathway in front
of the arrow is regulated by the upstream pathway. The connection between two pathways is marked on the edge. The feedback regulations are
marked as dashed lines.

8 BioMed Research International



(cGMP) [86, 87]. Three RDNI compounds (CAA, FA, and
IsoA) can interact with seven targets of this pathway
(P07550, P08588, P08913, P18089, P18825, P29474, and
P35348). CAA and FA can interact with alpha adrenergic
receptors (αARs, P08913, P18089, P18825, and P35348)
and beta adrenergic receptors (βARs, P07550, and P08588).
αARs activate guanine nucleotide-binding protein subunit
alpha-11 (GNA11, UniProt: P29992) and guanine
nucleotide-binding protein G(q) subunit alpha (GNAQ, Uni-
Prot: P50148). GAN11 and GANQ can further mediate the
generation of Ca2+ by activating IP3R. βARs would activate
guanine nucleotide-binding protein G(i) subunit alpha (Gi).
Gi can conduct the stimulus signal to eNOS and thenmediate
the generation of NO, while FA and IsoA can bind with
eNOS directly. NO regulates the generation of cGMP by acti-
vating s-GC. cGMP can activate PKG which regulates multi-
tudinous targets, including inflammation-related targets
(CREB, BAD) and targets responsible for Ca2+ concentrate
in the body, such as PLCβ, protein MRVI1 (UniProt:
Q9Y6F6), and cardiac phospholamban (PLB, UniProt:
P26678).

The other two pathways are fluid shear stress and ath-
erosclerosis pathway (hsa05418) and prostate cancer path-
way (hsa05215). The fluid shear stress and atherosclerosis
pathway regulates the progress of atherosclerosis and cor-
relates with the activation of proinflammatory gene
expression as well as early atherogenic inflammation [88,
89]. RDNI can also regulate the prostate cancer pathway
by interacting with 7 targets. This pathway has connection
with both inflammation-related targets and prostate can-
cer, indicating that RDNI may have potential therapeutic
effect against prostate cancer [90]. Degree centralities,
betweenness centralities, and closeness centralities of other
pathways in Figures 2(a) and 2(b) are generally lower, but
they are also important in the inflammatory process, such
as IL-17 signaling pathway, NF-κB signaling pathway, and
arachidonic acid metabolism pathway. It is worth men-
tioning that these pathways are closely relevant to the for-
mer four pathways.

3.3. Cross-Talks among Inflammation-Related Pathways.
Cross-talks among pathways are common in the regulation
of biological processes. They are normally connected by key
targets or common upstream/downstream pathways. The
integration and correlation analysis of these pathways can
help understand the MOA of TCM thoroughly and compre-
hensively. We analyzed the cross-talks within four key
inflammation-related pathways regulated by RDNI, namely,
estrogen signaling pathway, PI3K-AKT signaling pathway,
cGMP-PKG signaling pathway, and calcium signaling path-
way. Another three pathways were introduced to bridge the
gaps among these key pathways, namely, cAMP signaling
pathway (hsa04024), MAPK signaling pathway (hsa04010),
and NF-κB signaling pathway (hsa04064). The cross-talk
network (Figure 4) shows that each pathway is directly
related to the NF-κB signaling pathway. The expression
products of NF-κB, such as IL-1β [91], TNFα [92], PTGS2,
interleukin 6 (IL-6) [93], MMPs, and Bcl-2, play significant
roles in the inflammatory process. Associations with NF-κB

signaling pathways suggest the importance of other pathways
in the inflammatory process. The estrogen signaling pathway
is located in the upstream of the whole regulatory network,
and therefore, CAA can link almost all inflammatory pro-
cesses in the downstream pathway by modulating ER. Mean-
while, ER can regulate the expression of BCL2 gene and then
the expression of NF-κB as well as inflammatory factors suc-
cinctly. The cAMP signaling pathway is the direct upstream
of the PI3K-AKT signaling pathway, calcium signaling path-
way, and NF-κB signaling pathway; hence, CAA and its
derivative FA can influence the downstream inflammatory
process by regulating the formation of the cAMP.

The MAPK signaling pathway connects the estrogen sig-
naling pathway, PI3K-AKT signaling pathway, cGMP-PKG
signaling pathway, and cAMP signaling pathway to the
expression of NF-κB through the Ras pathway. In the cal-
cium signaling pathway, the generation of Ca2+ is regulated
by cAMP through multiple approaches. Ca2+ can regulate
the expression of cAMP in the form of feedback by Ca2+-
dependent adenylate cyclase (AC) and PKCθ. The generation
of cGMP is regulated by NO whose concentrate is regulated
by eNOS, a downstream enzyme of AKT. It can also interact
with regulatory targets of Ca2+ just like cAMP. The expres-
sion product of NF-κB such as IL-1β, TNFα, and IκBα regu-
lates both the expression of IKK and the dissociation of the
IκBα-NF-κB complex. The generation of IL-6, PTGS2, and
MMPs also has feedback regulation on upstream pathways.
These feedback regulation and the mediation of the MAPK
signaling pathway increase the complexity and robustness
of the regulatory effects of RDNI on the inflammatory
process.

4. Conclusions

In this work, the anti-inflammatory mechanism of RDNI was
explored by network pharmacological methods. Eighty-four
targets of RDNI were collected by data mining and molecular
docking to construct a compound-target network. Key tar-
gets (Bcl-2, eNOS, PTGS2, PPARA, and MMPs) were found
to be responsible for regulating the inflammatory process by
RDNI compounds and metabolites. Two hundred and one
pathways were found to be connected with RDNI targets.
Four key pathways, namely, estrogen signaling pathway,
PI3K-AKT signaling pathway, cGMP-PKG signaling path-
way, and calcium signaling pathway, would play important
roles. The cross-talks among four key pathways and another
three related pathways were further identified. Results dem-
onstrate that RDNI, an injection formed by multiple ingredi-
ents, can interact with multifarious inflammation-related
targets. The interactions make RDNI capable of regulating
multiple biological processes and treat inflammation at the
systems level. Moreover, TCM is a complicated drug system;
thus, complex interactions between multicomponents and
multitargets make it possible to regulate multipathways and
biological processes. Although the conclusions obtained in
this research require to be verified by further experiments,
network pharmacology provides a promising approach to
investigate the MOA of TCM.
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