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Background. Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world; its pathogenic
mechanism remains to be further clarified. Methods. Robust rank aggregation (RRA) analysis was utilized to identify the
metasignature dysregulated genes, which were then used for potential drug prediction. Weighted gene coexpression network
analysis (WGCNA) was performed on all metasignature genes to find hub genes. DNA methylation analysis, GSEA, functional
annotation, and immunocyte infiltration analysis were then performed on hub genes to investigate their potential role in
HNSCC. Result. A total of 862 metasignature genes were identified, and 6 potential drugs were selected based on these genes.
Based on the result of WGCNA, six hub genes (ITM2A, GALNTL1, FAM107A, MFAP4, PGM5, and OGN) were selected
(GS > 0:1, MM> 0:75, GS p value< 0.05, and MM p value< 0.05). All six genes were downregulated in tumor tissue (FDR < 0:01)
and were related to the clinical stage and prognosis of HNSCC in different degrees. Methylation analysis showed that the
dysregulation of ITM2A, GALNTL1, FAM107A, and MFAP4 may be caused by hypermethylation. Moreover, the expression
level of all 6 hub genes was positively associated with immune cell infiltration, and the result of GSEA showed that all hub genes
may be involved in the process of immunoregulation. Conclusion. All identified hub genes could be potential biomarkers for
HNSCC and provide a new insight into the diagnosis and treatment of head and neck tumors.

1. Introduction

Head and neck squamous cell carcinoma (HNSC) is the sixth
most common cancer in the world [1]. Worldwide, more
than 300000 patients die of HNSC every year [2]. Although
many treatments for HNSC such as surgery, chemotherapy,
and radiotherapy have obtained some success, the 5-year sur-
vival rate is still only 40-50% [3]. The chances of survival for
patients with HNSCC depend largely on the initial stage of
cancer. Therefore, early detection and accurate diagnosis
are crucial for patients with HNSCC to receive treatment.

In the past twenty years, with the application of microar-
ray and next-generation sequencing technologies, a great
number of novel diagnostic or therapeutic biomarkers have
been identified in HNSCC [4]. However, small samples in
independent research, different platform technologies, and

different screening criteria have a great impact on the
research results. To solve this problem and obtain stable bio-
markers, researchers proposed a novel rank aggregation
method: robust rank aggregation (RRA) [5], which has been
implemented as an R package (RobustRankAggreg) [5], to
identify the overlapping genes among ranked gene lists [6],
thus making the result more reliable.

WGCNA [7] is an effective method to find the clusters of
highly correlated genes and identify the hub genes of each
cluster [7]. This method has been widely applied in various
biological contexts. In our study, a total of 24 independent
gene datasets were included in RRA analysis to identify
robust DEGs. We used these DEGs to predict the potential
small molecular drugs. The coexpression network was then
established by WGCNA to identify hub genes in these robust
DEGs. The role of all hub genes in HNSCC was then
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validated by other independent databases. Furthermore, we
also utilized multiple online tools such as DiseaseMeth [8],
MEXPRESS [9], and MethSurv [10] to evaluate the methyla-
tion level of hub genes. TIMER was used to assess the associ-
ation between immune infiltration and hub genes. GSEA [11]
analysis was applied to explore the biological functions of
these hub genes. To the best of our knowledge, this is the first
time to utilize RRA and WGCNA simultaneously for screen-
ing biomarkers of HNSCC.

2. Result

2.1. Metasignature DEGs Identified by RRA Analysis. The
workflow of our study is shown in Figure 1, 24 independent
studies were used in RRA analysis, and a total of 466 upreg-
ulated genes and 396 downregulated genes were identified.
The top 5 upregulated genes in tumor tissue were MMP1
(FDR = 4:77e − 53), MMP10 (FDR = 8:25e − 40), PTHLH
(FDR = 1:48e − 38), MMP3 (FDR = 5:38e − 38), and SPP1
(FDR = 2:79e − 37) while TMPRSS11B (FDR = 1:53e − 36),

MAL (FDR = 8:50e − 35), CRISP3 (FDR = 1:60e − 34),
CRNN (FDR = 4:32e − 33), and KRT4 (FDR = 1:24e − 30)
were the most significant downregulated genes. The chromo-
somal locations and expression patterns of the top 100 DEGs
are visualized in Figure 2. Chromosome 1 contains most
metasignature DEGs while X and Y chromosome contains
no DEGs. It is clear that almost all displayed genes have the
same expression pattern in most of the independent studies,
which indicates the reliability of the RRA analysis result.

2.2. Functional Enrichment Analysis. We select the top 300
DEGs to perform GO and KEGG enrichment analyses.
Among the KEGG pathway database, we can find that these
DEGs were enriched in multiple cancer-related pathways like
focal adhesion, PI3K-Akt signal pathway, pathway in cancer,
small-cell lung cancer, transcriptional misregulation in can-
cer, and chemical carcinogenesis (Figure 3(a)). Furthermore,
in all terms of KEGG and GO, we found that these meta-
signature genes mostly involved in pathways associated with
the construction of ECM such as ECM receptor interaction,
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Figure 1: Simple flow chart of the entire study.
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extracellular matrix organization, collagen catabolic process,
collagen binding, collagen trimer, extracellular region, and
extracellular exosome (Figure 3).

2.3. Screen the Candidate Small Molecule Drugs for HNSCC.
According to our screen criteria, 6 small molecule drugs (repa-
glinide ES = −0:848, thiostrepton ES = −0:863, levamisole ES
= −0:75, cortisone ES = −0:866, zimeldine ES = −0:784, and
cyproterone ES = −0:742) were identified (Table 1). Their 2D
structures are visualized in Supplementary Fig 1. These poten-
tial drugs can to some extent reverse the robust dysregulated
genes in HNSCC, thus providing suggestions for us to develop
targeted drugs.

2.4. Identification of Hub Genes in HNSCC Patients. To iden-
tify the hub genes, we performedWGCNA on the GSE65858,
which included 270 samples from HNSCC patients with
complete clinical data. Six different gene modules were iden-
tified (Figure 4) according to the result of cluster analysis on

expression data of metasignature DEGs. The correlation
coefficients between each module and each clinical trait were
calculated, and it is clear that only the blue module and gray
module were significantly associated with T grade of HNSCC
(Figure 4(e)). Because genes in the gray module are not sig-
nificantly coexpressed with each other, we only chose the
blue module as a key module. A total of 102 genes were
included in blue modules, and the result of enrichment anal-
ysis for these genes showed that the most significant GO and
KEGG terms were related to cell metabolism, chemokine
activity, and transmembrane transport (Supplementary Fig
2). According to the value of GS and MM (GS > 0:1, MM>
0:75, GS p value < 0.05, and MM p value < 0.05), 6 genes
(ITM2A, GALNTL1, OGN, FAM107A, MFAP4, and PGM5),
which were also significantly correlated with each other
(Figure 4(f)), were selected from the blue module.

2.5. Validate the Role of Hub Genes in HNSCC. To further
validate the diagnostic role of hub genes, we compare the
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Figure 2: Circular visualization of expression patterns and chromosomal positions of top 100 DEGs. Red indicates gene upregulation, blue
indicates downregulation, and white indicates genes that do not exist in a given dataset.
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expression level of these genes between normal tissue and
tumor tissue in the TCGA database. Considering the result
of WGCNA which revealed a negative association between

hub genes and tumor T grade, we also used the TCGA data-
base to validate the role of hub genes in TN grade of HNSCC.
In Figure 5(a), it is clear that all 6 hub genes were remarkably
different between normal and tumor tissues, and the ROC
curve indicates a high diagnostic value of all hub genes (Sup-
plementary Fig 4A). In Figure 5(b), we can see that five hub
genes (ITM2A, GALNTL1, FAM107A, MFAP4, and PGM5)
were upregulated in the T1-T2 stage and downregulated in
the T3-T4 stage, which is consistent with the result in
WGCNA. However, there is no correlation between hub
genes and tumor N stage (Supplementary Fig 3). The result
above indicated that these hub genes may affect the growth
rather than metastasis of the tumor.

2.6. Explore the Role of Hub Genes in Malignant
Transformation and Prognosis. GSE30748 provides the gene
expression data of oral dysplasia tissue. Compared with
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Figure 3: GO and KEGG analyses of the top 300 DEGs. (a) The correlation between genes and KEGG pathway. (b) The correlation between
genes and GO terms of biological process. (c) The correlation between genes and GO terms of molecular function. (d) The correlation
between genes and GO terms of cellular component.

Table 1: Six candidate small molecule drugs.

Drug name
Mean value
of correlation
coefficient

Number of
experiments

Enrichment
score

p value

Repaglinide -0.685 4 -0.848 0.00097

Thiostrepton -0.659 4 -0.863 0.00064

Levamisole -0.619 4 -0.75 0.00784

Cortisone -0.606 3 -0.866 0.00479

Zimeldine -0.575 5 -0.784 0.00086

Cyproterone -0.552 4 -0.742 0.00875

7BioMed Research International



35
Sample dendrogram and trait heatmap

30

25

20

15

10

5

0

Gender

t-category

n-category

Distant-metastasis

H
ei

gh
t

(a)

12108642 12108642

0.0

0.2

0.4

0.6

Sc
al

e f
re

e t
op

ol
og

y 
m

od
el

 fi
t, 

sig
ne

d 
R

2

M
ea

n 
co

nn
ec

tiv
ity

So� threshold (power)So� threshold (power)

Mean connectivityScale independence

0.8 150

100

50

0

3

2

1
12

11109
87

6

4

3

2

1
4 5 6 7 8 9 10 11 12

(b)

Figure 4: Continued.

8 BioMed Research International



1.0

0.9

0.8

H
ei

gh
t

Cluster dendrogram

0.7

0.6

Dynamic tree cut

Merged dynamic

(c)

1.2

Clustering of module eigengenes

0.8

0.4

0.0

M
Eb

lu
e

M
Eb

la
ck

M
Et

ur
qu

oi
se

M
Eb

ro
w

n

M
Ey

el
lo

w

M
Eg

re
y

M
Ep

in
k

M
Eg

re
en

M
Er

ed

H
ei

gh
t

(d)

Figure 4: Continued.

9BioMed Research International



MEblue

Module-trait relationships

MEturquoise

MEblack

MEbrown

MEyellow

MEgrey 0.035
(0.6)

0.027
(0.7)

–0.049
(0.4)

0.03
(0.6)

–0.0095
(0.9)

0.0097
(0.9)

–0.0094
(0.9)

–0.0073
(0.9)

0.042
(0.5)

–0.14
(0.2)

0.048
(0.4)

–0.095
(0.1)

0.094
(0.4)

0.067
(0.3)

–0.11
(0.7)

0.069
(0.3)

0.14
(0.03)

–0.066
(0.3)

–0.077
(0.2)

–0.085
(0.2)

–0.067
(0.3)

–0.021
(0.7)

–0.019
(0.8)

–0.013
(0.8)

G
en

de
r

t_
ca

te
go

ry

n_
ca

te
go

ry

di
sta

nt
_m

et
as

ta
sis

1

0.5

0

–0.5

–1

(e)

Figure 4: Continued.

10 BioMed Research International



tumor tissue, we found that all hub genes were significantly
higher expressed in dysplasia tissue (Figure 6(b)); except for
FAM107A with AUC = 0:66, the other 5 hub genes have
AUC > 0:7 (Supplementary Fig 4B). We also explore the
prognostic role of all these hub genes by using the GEPIA
website [12]. The KM curve showed that the lower expression
of four hub genes (ITM2A HR = 0:72, GALNTL1 HR = 0:74,
FAM107A HR = 0:72, and MFAP4 HR = 0:76) was signifi-
cantly associated with poor overall survival (Figure 6(a)).

2.7. DNAMethylation and Expression of Hub Genes.As we all
know, methylation can significantly affect the expression of
multiple genes; therefore, we at first used DiseaseMeth 2.0
to explore the mean methylation level of hub genes. Because
OGN was not included in DiseaseMeth, we only explore the
other 5 genes. We found that the mean methylation level of
ITM2A, GALNTL1, FAM107A, andMFAP4 was significantly
higher in tumor tissue while the methylation level of PGM5
was higher in normal tissue (Supplementary Fig 5). This indi-
cates that the low expression PGM5 in HNSCC may not be
caused by methylation. We next explore the relationship
between four hub genes and their methylation site. From
Supplementary Fig 6, we can see that various methylation
sites on each gene were negatively correlated with the
expression level of the corresponding gene, indicating that
downregulation of four hub genes (ITM2A, GALNTL1,
FAM107A, and MFAP4) may be caused by hypermethyla-
tion. To find the key methylation site of hub genes, we also
used MethSurv to explore the prognostic role of these meth-
ylation sites (r < 0 and adjusted p value < 0.05). A total of 15
methylation sites were found to be important prognostic fac-
tors for HNSCC (Figure 7).

2.8. Immune Infiltration and Hub Genes. The tumor micro-
environment comprises multiple kinds of cells such as epi-
thelial cells, fibroblasts, and immune cells. A great number
of studies have revealed the significant role of immune cells
in various cancers. Therefore, we used TIMER to investigate
the association between hub genes and different kinds of
cells. It is interesting that we found that all hub genes were
negatively correlated with tumor purity. On the contrary, 6
hub genes were all positively related to the infiltration of
immune cells (Figure 8).

2.9. GSEA Revealed Pathway Dysregulated by Hub Genes. To
further explore the expression pathway of all 6 hub genes,
GSEA analysis was performed for each gene. Supplementary
Fig 7 represents the top 10 enriched pathways in each hub
gene (ranked by enrichment score). According to the result
of GSEA, we found that multiple immune-related pathways
were significantly enriched in the higher expression group
of hub genes like allograft rejection, primary immunodefi-
ciency, intestinal immune network for IgA production, T cell
receptor signaling pathway, B cell receptor signaling path-
way, autoimmune thyroid disease, graft-versus-host disease,
human T cell leukemia virus 1 infection, leukocyte transen-
dothelial migration, Th1 and Th2 cell differentiation, Th17
cell differentiation, and asthma.

3. Discussion

To identify the robust dysregulated genes in HNSCC, we
included a total of 24 independent datasets for RRA analysis.
A total of 466 upregulated genes and 396 downregulated
genes were identified. The top 5 upregulated genes mostly
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came from matrix metalloproteinase (MMP) families. Its
family members have been proved to play a vital role in the
progression, invasion, and metastasis of HNSCC [13]. The
most downregulated gene is TMPRSS11B, a member of the
type II transmembrane serine protease family. It has been
reported to be downregulated in multiple epithelial cancers
[14]. To further understand the biological function of these
metasignature genes, we performed GO and KEGG analyses
on the top 300 metasignature DEGs. Multiple cancer-related
pathways such as transcriptional misregulation, PI3K-Akt
signaling pathway, pathways in cancer, and ECM receptor
interaction were significantly enriched, confirming the
important role of these DEGs in HNSCC. Furthermore,
many enriched terms were associated with the construction
of ECM, indicating the importance of the microenvironment
in the development of HNSCC. According to the results of
enrichment analyses, we confirmed that these metasignature
DEGs are significantly related to the occurrence and develop-
ment of HNSCC.

After identifying the robust DEGs in HNSCC, we try to
use the expression pattern of these genes to predict the poten-
tial small molecule drugs. The CMap database was used, and
six small molecule drugs were selected because they can
reverse the expression pattern of metasignature DEGs.
Among all these drugs, four of which have been studied in
HNSCC previously. For instance, thiostrepton has been
reported to affect the proliferation, apoptosis, and radiosensi-

tivity in head and neck cancer [15, 16]. Levamisole also has
been used in HNSCC before, but its effect is still controversial
[17]. Cyproterone and cortisone are both hormone medi-
cines. However, there is no strong evidence that hormone
therapy is effective for head and neck tumors. Repaglinide
is a hypoglycemic agent while zimeldine is a kind of antide-
pressant drug, both of which have not been studied as a drug
for HNSCC. Considering that the mortality rate of head and
neck tumors has not improved significantly in the past ten
years, traditional treatment methods like surgery and radio-
therapy may not be enough for HNSCC; it is meaningful to
further reveal the potential of chemical molecules in targeted
therapy of HNSCC.

To identify the hub genes among all 862 metasignature
DEGs, WGCNAwas utilized to construct a coexpression net-
work. Finally, we identified 6 hub genes (ITM2A, GALNTL1,
OGN, FAM107A, MFAP4, and PGM5) according to our
selection criteria. We used other independent databases to
validate the expression pattern and clinical relationship of
these hub genes. The result showed that all hub genes were
downregulated in tumor tissue and were negatively corre-
lated with tumor T stage. Furthermore, compared with
tumor tissue, these 6 hub genes were also downregulated in
dysplasia tissue. The ROC curve indicated that these genes
may help us better identify the HNSCC. Besides, four genes
(ITM2A,GALNTL1, FAM107A, andMFAP4) also performed
well in the prognosis prediction of HNSCC. Interestingly, all
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Figure 6: Continued.
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6 hub genes were seldom explored in HNSCC previously.
ITM2A, a family member of BRICHOS, has been reported
to be downregulated in both breast and ovarian cancers
which may affect the proliferation and autophagy process of
tumors [18, 19]. However, its role in HNSCC has not been
fully studied. Similarly, the role of another 5 hub genes in
cancer also has been reported previously to varying degrees.
For example, PGM5 was identified as a diagnostic and prog-
nostic biomarker in liver and colorectal cancers [20, 21]. The
higher expression of antisense chain of PGM5 was showed to
inhibit the proliferation and metastasis of tumors [22]. The
higher expression of OGN was also reported to inhibit the
process of EMT through the EGFR/Akt pathway [23]. How-
ever, the role of these genes in the development of HNSCC
remains unclear.

As we all know, hypermethylation is an important cause
of the downregulation of gene expression. A recent study
showed that hypermethylation may lead to the low expres-
sion of FAM107A in laryngeal cancer [24], which is consis-
tent with our results. Through methylation analysis, we also
find that the low expression of another three hub genes
(ITM2A, GALNTL1, and MFAP4) may be significantly asso-
ciated with hypermethylation in multiple methylation sites.
Because DNA methylation is a reversible process, targeted
therapies for the unique methylation site of the tumor are
promising. To further screen out methylation sites with

research potential, we also performed survival analysis and
found that hypermethylation of 15 methylation sites in
FAM107A, GALNTL1, and MFAP4 was significantly associ-
ated with poor overall survival. All selected hub genes and
their methylation conditions may help us better judge the
state of HNSCC (inert or invasive), so as to develop a more
appropriate treatment strategy.

A great number of previous researches have revealed that
the infiltration of immune cells in the tumor microenviron-
ment could largely affect the development of cancer cells
[25, 26]. Therefore, we used TIMER to explore the relation-
ship between hub genes and immune cell infiltration. Inter-
estingly, all six hub genes were positively correlated with
infiltration of B cell, CD8+ T cell, CD4+ T cell, macrophage,
neutrophil, and dendritic cells, indicating that our hub genes
may to some extent play a role in immunological regulation.
The results of GSEA further support this hypothesis; a great
number of immune-related pathways were significantly
enriched in higher expression groups of hub genes. A recent
study confirmed our result; Hu et al. point out that higher
expression of OGN can promote the infiltration of CD8+ T
cells thus inhibiting the formation of new blood vessels in
colorectal cancer [27]. Some studies also have described the
role of some hub genes (ITM2A,MFAP4) in immunoregula-
tion [28, 29]. However, the role of these genes in tumor
immune regulation is still not fully illustrated; we need more
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Figure 6: The role of hub genes in malignant transformation and prognosis: (a) prognostic role of all hub genes; (b) the expression level of
hub genes in normal, dysplasia, and tumor tissues.
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experiments to validate the association between these hub
genes and immune infiltration.

4. Conclusion

In conclusion, by utilizing the RRA method, we identified a
series of robust DEGs in HNSCC. Based on WGCNA, 6
hub genes (ITM2A, GALNTL1, OGN, FAM107A, MFAP4,
and PGM5) in the blue module were selected. All hub genes
were significantly downregulated in tumor tissue of HNSCC.
The expression pattern of four hub genes (ITM2A,
GALNTL1, FAM107A, andMFAP4) may be caused by hyper-
methylation. All six hub genes may play a role in immuno-

logical regulation in the microenvironment of HNSCC
which need more experiment to verify.

5. Materials and Method

5.1. Selection of Included Datasets. The mRNA expression
profile-related datasets were searched in the GEO database
by using the keywords head and neck cancer, larynx, laryn-
geal, tongue, mouth, oral, oropharynx, tonsil, hypopharynx,
and hard palate. Two people independently screened the
datasets based on the inclusion criteria as follows: (1)
Included datasets must provide the gene expression profile
of HNSCC and corresponding normal tissue control. (2)
Each group of one dataset should contain at least 5 samples.

Figure 7: 15 methylation sites of hub genes with prognostic ability in HNSCC.
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(3) The platform of each study should contain more than
8000 genes. Finally, a total of 25 studies were included in
our research, and among which, 24 independent studies were
used for RRA analysis; one dataset (GSE30784) with gene
expression data of dysplasia tissue was used for further vali-
dation and exploration. Detailed information of included
GEO datasets is shown in Table 2.

5.2. Identification of Robust DEGs. R package “GEOquery”
was used to directly obtain series matrix files, sample pheno-

type data, and corresponding platform information from the
GEO database. We used “limma” R package to normalize the
data and obtain DEGs of each study (p value < 0.05). The up-
or downregulated genes were arranged from large to small
according to the absolute value of logFC. The “RobustRan-
kAggreg” package in R was created for comparison of ranked
gene lists and identification of metasignature genes. The
result of RRA can help us identify more robust genes from
different studies, and the detailed method of the RRAmethod
has been described by previous articles [30]. In the end, the p
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value of the output result was subjected to Bonferroni correc-
tion, and mRNA with adjusted p value < 0.05 was considered
significantly dysregulated. Furthermore, “OmicCircos” R
package was utilized to visualize the expression patterns of
the top 100 metasignature DEGs in each included study (dys-
regulated genes according to adjusted p value).

5.3. Enrichment Analysis. We used DAVID Bioinformatics
Resources 6.8 (DAVID; http://david.abcc.ncifcrf.gov/) to
annotate the top 300 metasignature genes. GO and KEGG
enrichment analyses were performed by using the prediction
tool on the website. Bubble charts were used to visualize the
top 20 terms of enrichment results.

5.4. Identification of Potential Drug for HNSCC. The Connec-
tivity Map (CMap) [31] database (http://www.broadinstitute
.org) can help us to predict the potential drugs which can
reverse the expression of specific genes. In this study, we
input the top 300 metasignature genes (165 upregulated
and 135 downregulated genes) into the online tool of CMap
for gene set enrichment analysis. Each small molecule will
be assigned an enrichment score between -1 and 1. The lower
the enrichment score, the better the drug effect to reverse the
state of HNSCC cells. In our study, drugs with p value < 0.01
and the enrichment score < −0:7 were considered potential
small molecules. We also used PubChem (http://www

.pubchem.ncbi.nlm.gov) to visualize the 2D structure of
selected small molecules.

5.5. Key Module and Hub Genes Identified by WGCNA. A
total of 862 metasignature genes were included for
WGCNA with expression data from GSE65858. We con-
struct a gene coexpression network for all metasignature
DEGs; “WGCNA” R package was applied to explore the rela-
tionship between each coexpression module and clinical phe-
notype. A correlation matrix was constructed which was
subsequently transformed to a TOMmatrix based on the soft
threshold (β = 7, R2 = 0:9). All metasignature genes were dis-
tributed in different gene modules according to the value of
the TOM matrix. Here, we set the minimal module size as
15 and cut height as 0.5. The module with a significant corre-
lation with clinical characteristics was selected. GO and
KEGG enrichment analyses were performed on the clinical-
related modules. We selected the hub gene according to the
value of GS and MM (GS > 0:1, MM> 0:75, GS p value <
0.05, and MM p value < 0.05).

5.6. Verify the Clinical Relevance of Hub Genes. We used the
TCGA database at first to validate the diagnostic role of hub
genes and the relationship between hub genes and clinical
characteristics. We also used an independent dataset
(GSE30748) to explore the hub genes’ expression levels

Table 2: Detailed information of 24 datasets which were used in RRA analysis.

Time Gene set Platform Number of probes Country Tumor type Tumor sample number Control sample number

2008 GSE10121 GPL6353 33484 Germany OSCC 35 6

2017 GSE103412 GPL23978 39321 Denmark OSCC 23 9

2008 GSE13399 GPL7540 36197 USA HNSCC 8 8

2008 GSE13601 GPL8300 12625 USA OSCC 31 26

2019 GSE138206 GPL570 9442 China OSCC 6 6

2020 GSE143224 GPL5175 19076 Brazil LSCC 14 11

2010 GSE23036 GPL571 22277 Spain HNSCC 63 5

2010 GSE23558 GPL6480 41000 India OSCC 27 5

2010 GSE25099 GPL5175 17881 China OSCC 57 22

2011 GSE29330 GPL570 54675 USA HNSCC 13 5

2011 GSE31056 GPL10526 17788 USA OSCC 23 73

2011 GSE33205 GPL5175 22011 USA HNSCC 44 25

2011 GSE34105 GPL14951 29377 Sweden OSCC 62 16

2012 GSE37991 GPL6883 24526 China OSCC 40 40

2012 GSE42743 GPL570 54645 USA OSCC 74 29

2013 GSE51985 GPL10558 47220 China LSCC 10 10

2014 GSE55550 GPL17077 50739 USA OSCC 139 16

2014 GSE58911 GPL6244 33297 USA HNSCC 15 15

2014 GSE59102 GPL6480 34664 Brazil LSCC 29 13

2007 GSE6631 GPL8300 12625 USA HNSCC 22 22

2007 GSE6791 GPL570 54675 USA HNSCC 42 14

2016 GSE83519 GPL4133 43376 Netherlands HNSCC 22 22

2016 GSE84957 GPL17843 77162 China LSCC 9 9

2007 GSE9844 GPL570 54645 USA OSCC 26 12

LSCC: laryngeal squamous cell cancer; OSCC: oral squamous cell cancer; HNSCC: head and neck cancer.
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between dysplasia tissue and tumor tissue. The Student t-test
or one-way analysis of variance (ANOVA) was used appro-
priately to test the result of the comparison. Furthermore,
we also plot the ROC curves to assess hub genes’ diagnostic
value; the area under the ROC curve (AUC) was calculated
by the “pROC” R package. Survival analysis was also per-
formed on all hub genes by using GEPIA (a visualization
website based on the TCGA database: http://gepia.cancer-
pku.cn/). The median is considered to be the cutoff for high
and low expression of hub genes.

5.7. Methylation Analysis. In order to further explore the rea-
son for the dysregulation of hub gens, we performed methyl-
ation analysis on all hub genes based on DiseaseMeth 2.0 [8]
(http://bioinfo.hrbmu.edu.cn/diseasemeth/), which is a web-
site focusing on collecting methylation data from various
tumor tissue. We compare the mean value of methylation
between HNSCC and corresponding normal tissue. Further-
more, we also used MEXPRESS [9] (http://mexpress.be) to
explore the association between the expression level of hub
genes and the methylation level of the corresponding methyl-
ation site. Those methylation sites that are negatively corre-
lated with gene expression are defined as candidate sites. To
further screen potential key methylation sites, we also con-
ducted survival analyses on these candidate sites by using
MethSurv [10] (https://biit.cs.ut.ee/methsurv/).

5.8. Immune Cell Infiltration and Hub Genes. To explore the
association between immune cell infiltration and expression
level of hub genes, we used TIMER [32] (https://cistrome
.shinyapps.io/timer/), an online tool based on the TCGA
database, to evaluate the infiltration score for six kinds of
important immune cells (B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages, and dendritic cells). The Pearson
correlation coefficient between hub genes and the infiltration
score were then calculated.

5.9. Gene Set Enrichment Analysis. According to the mean
expression value of 6 hub genes, all HNSCC samples in the
TCGA database were divided into high expression groups
and low expression groups. GSEA analysis was performed
and visualized by using the “clusterprofiler” R package. The
KEGG gene set was directly downloaded from MSigDB
(http://software.broadinstitute.org/gsea/msigdb/index.jsp).
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