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Simple Summary: Ensuring a good quality of life for animals is a matter of concern. Welfare
assessment has been quite well developed for many terrestrial species, but it is less well characterized
for aquatic animals. Classic methodologies, such as behavioral observation, seem unable to improve
the wellbeing of aquatic animals when used alone, mainly due to the large number of species and
the difficulty to obtain comparative results among taxa. For this reason, it is necessary to identify
more methodologies that may be common to the main aquatic taxa of interest to humans: Fish,
cephalopods, and crustaceans. Here we present a physiological framework for these taxa as a proxy
to evaluate aquatic animal welfare. Physiology is a useful tool in this regard, since animals maintain
their homeostasis in a range of values determined for each parameter. Changes occur depending
on the type and degree of stress to which animals are subjected. Therefore, understanding the
physiology of stress can offer information that helps improve the welfare of aquatic animals.

Abstract: The assessment of welfare in aquatic animals is currently under debate, especially con-
cerning those kept by humans. The classic concept of animal welfare includes three elements: The
emotional state of the organism (including the absence of negative experiences), the possibility
of expressing normal behaviors, and the proper functioning of the organism. While methods for
evaluating their emotions (such as fear, pain, and anguish) are currently being developed for aquatic
species and understanding the natural behavior of all aquatic taxa that interact with humans is a task
that requires more time, the evaluation of internal responses in the organisms can be carried out using
analytical tools. This review aims to show the potential of the physiology of crustaceans, cephalopods,
elasmobranchs, teleosts, and dipnoans to serve as indicators of their wellbeing. Since the classical
methods of assessing welfare are laborious and time-consuming by evaluation of fear, pain, and
anguish, the assessment may be complemented by physiological approaches. This involves the study
of stress responses, including the release of hormones and their effects. Therefore, physiology may
be of help in improving animal welfare.
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1. Introduction
1.1. Welfare

Human–animal interactions are defined by complex and refined relationships. A de-
sire to improve these relationships has led us to be concerned about the conditions of the
animals and their wellbeing. Animal welfare is a difficult concept to define, mostly due to
anthropomorphic perception, but it is usually associated with three different aspects: (i) The
physiological functioning of an animal; (ii) its natural living environment; and (iii) its feel-
ings [1,2]. Traditionally, in farmed animals, welfare has been associated with the fulfillment of
the “Five principles of freedom”, described by the Farm Animal Welfare Council (FAWC) [3].
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These five principles serve to guarantee the vital needs in the absence of negative experiences.
Therefore, animals must be free from hunger, thirst, discomfort, pain, disease, fear, anguish,
and must be free to express their natural behavior. This definition is widely general and
vague. In this sense, other authors prefer the term “quality of life”, where both negative and
positive experiences are assumed in the normal life of any animal, all of them supporting the
proper development of individuals [2]. Based on these (and other) definitions, a complete set
of legislation has been developed in many countries to guarantee and improve the welfare of
animals interacting with humans, as discussed below.

Governmental concern about animal welfare, described in relevant policies, is gaining
importance, not only for terrestrial ecosystems but also for aquatic ecosystems. In Europe,
the initial regulations were directly related to animal sentience [4], something traditionally
considered for mammals, birds, and reptiles, but recently extended to fish [5]. However,
due to the lack of sufficient scientific evidence, problems have arisen when determining
animal sentience for the entire collection of aquatic animals that are subjected to human
influence (i.e., aquaculture, fisheries, zoos, etc.). Nevertheless, the current trajectory is to
increase the number of taxa protected by these regulations, including invertebrates such
as crustaceans and cephalopods [6]. Legislation tends to regulate all taxa that are kept
captive, as well as their procedures of humane slaughtering [6]. Outside Europe, most
of the current legislation considers farmed fish as the only aquatic animals that deserve
a welfare treatment. Therefore, the “OIE Aquatic Animal Health Code” (World Organi-
zation for Animal Health) introduces recommendations to apply to farmed fish during
stocking, transport, stunning, and killing [7]. Similarly, the FAO (Food and Agriculture
Organization of the United Nations) has recently published a report in which the welfare
of farmed finfish is addressed, but excludes animals captured in the wild (commercial or
recreational fisheries), and issues related to the culture of crustaceans and mollusks are not
considered [8]. In the European Union, the regulations related to welfare in aquaculture
are the Council Directive 98/58/EC [9], the Regulation (EC) 882/2004 [10], the Regula-
tion (EC) 1/2005 [11], the Council Directive 2006/88/EC [12], and the Regulation (EC)
1099/2009 [13]. Despite all these regulations, no specific requirements for the husbandry,
transport, or slaughter of fish are considered [8]. There is only one exception, the Regula-
tion (EC) 710/2009 [14], in which the rules for organic aquaculture for animal and seaweed
production are detailed. This regulation establishes the obligation to guarantee the welfare
conditions for fish, crustaceans, mollusks, and echinoderms, and defines the conditions
of water quality, stocking density, and feeding regime, without further information about
their specific necessities, behaviors, and/or physiological conditions. Regarding fisheries,
certification organizations, such as the Marine Stewardship Council (MSC), are starting
to consider ensuring animal welfare during capture and slaughter of fish, but this is far
from being applied due to the complexity of its evaluation [15]. The current regulation for
keeping animals in zoos and aquaria in Europe is the Council Directive 1999/22/EC [16],
and only establishes the obligation to maintain welfare conditions in a general and vague
way. However, the European Commission [17], and the European Association of Zoos and
Aquaria (EAZA) [18], have recently published documents of good practices to improve
the standards for the accommodation and care of animals in zoos and aquaria. The most
advanced regulations about welfare of aquatic animals are those related to animals used in
experimentation [6]. For example, the EU Directive 2010/63/EU [19], which includes fish
and cephalopods, considers physiological stress responses as part of welfare assessment
during the care and accommodation of animals. Similarly, other countries, such as Aus-
tralia, Canada, New Zealand, Norway, and Switzerland, include not only cephalopods but
also decapod crustaceans in their regulations of animal experimentation [6].

Current approaches to determining whether taxa should be included in animal wel-
fare regulations are based on animal sentience, which is a complex term to apply for
some aquatic taxa, especially invertebrates [6]. Some researchers have focused on the neu-
roanatomical search for nociceptors (sensory neurons that respond to potential damaging,
also known as “pain receptors”) [2,20,21]. However, the idea of pain, suffering, and, above
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all, consciousness, remains to be sufficiently determined for humans, let alone for animals.
Therefore, this concept must be applied with caution for legislation [6]. Another large area
of study in relation to animal welfare has focused on behavior [22,23]. In terrestrial animals,
a list of anomalous behaviors related to discomfort has been developed [23]. This has been
possible due to the ease with which we can observe these animals, as well as the (relatively)
small number of terrestrial species managed in captivity and in natural environments.
However, only (relatively) few aquatic species kept in captivity can be observed directly,
since there is an immense variety of taxa, with different shapes, sizes, and biological needs,
making it very difficult to describe their behavior adequately. Moreover, the variation
in individual fish responses to the same situation (which have been studied extensively
for aquaculture purposes), make an overall assessment very difficult [6]. The concept of
homeostasis is well known in animals as the equilibrium of the internal state to maintain
life through biochemical reactions. These physiological responses are independent of other
processes such as pain, sentience, or suffering (although they may be associated with them),
but any deviation from baseline conditions is indicative of imbalances that may result in
adverse conditions for animals. Complexity increases in this sense, since the physiological
stress responses are not only taxa-specific, but may also be species-specific. Therefore, it is
complicated to search for universal patterns that can serve to establish common bases for
all aquatic animals, although it is not impossible. Previously, some authors have addressed
and reviewed the welfare of aquatic animals from different points of view [1–3,6,20–23],
although we consider that the animal physiology has not been given the importance it
deserves. These studies were mostly focused on: (i) Establishing analogies between human
and animal brains (looking for shared mental capabilities); (ii) behavioral changes; (iii)
evidence of sentience-pain-suffering; and (iv) cortisol or lactate production as the most
relevant physiological parameters in teleosts; or (v) mobilization of energy metabolites in
other taxa. We observed a lack of consistency in the comparative assessment of welfare
between aquatic animals. Physiology may be considered as the common ground to evaluate
welfare through the assessment of stress responses. In this regard, in the following sections
we define basic concepts of stress physiology and, subsequently, highlight some specific
details among different taxa.

1.2. Stress Physiology

Animals have evolved maintaining internal body fluids within a controlled range of
certain parameters, including pH, ion concentration, oxygen supply, or available energy
metabolites, amongst others (see Table 1). All of them are regulated through biochemi-
cal reactions involving enzymes, hormones, transporters, and specific proteins or lipids,
influenced by temperature.

Table 1. Main physiological parameters of aquatic animals’ homeostasis. It should be noted that certain differences exist
depending on the taxa.

System Parameters References 1

Acid-base balance H+, OH−, HCO3
−, PO4

2−, SO4
2− [24,25]

Hydric-ionic balance H2O, osmolality, Na+, Cl−, K+, Ca2+, Mg2+, others [26–29]

O2 (CO2) transport Hemoglobin/hemocyanin, hematocrit [30–32]

Energy management Glucose, lactate, amino acids, triglycerides, free fatty acids, etc. [33–35]

Immune system (Innate)
Physical barriers, cell-mediated defense (phagocytosis),

humoral defense (antimicrobial enzymes, non-specific proteins,
complement system), inflammation

[36–42]

Immune system (Adaptive) 2 Cell-mediated defense (B- and T-lymphocytes) [38]

Free radicals balance Oxidative stress system [43–46]

Others Hormones, temperature, etc. [43,47]
1 These are a selected group of scientific publications, mostly reviews. 2 Adaptive immune system is only present in vertebrates.
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The maintenance of this homeostasis after compromising stressful events requires a
synchronized action of allostatic changes [48], that enable the return to optimal physiologi-
cal levels for the animal [49]. These modifications, or physiological stress responses, are
grouped into primary, secondary, and tertiary responses (Figure 1) [50]. After integrating
a stressor, the animal processes the information through its nervous system and alerts
the body. The first responses include the secretion to the circulatory system of neuroen-
docrine hormones such as catecholamines [51,52] and others, including corticosteroids in
vertebrates [21,53,54] and hyperglycemic hormone in crustaceans [55]. These hormones
induce secondary stress responses, increasing heart and respiration frequency rates, and
mobilizing energy metabolites to cover the demand for energy and oxygen imposed by the
stressor [21,31,56–58]. If the stressor persists over time, a series of tertiary stress processes
will develop that can lead to the collapse of energy stores and the immune system, behavior
and reproduction impairments, and eventual death of the animal [21,58,59]. All these
responses depend on the taxonomic group, and large differences exist between terrestrial
and aquatic animals, especially invertebrates and fish. As an example of these differences,
most of these aquatic animals are not able to maintain their internal temperature constant
by endogenous means, which can influence other physiological mechanisms related to
homeostasis. Therefore, we describe the major physiological differences among crustaceans,
cephalopods, elasmobranchs, teleosts, and dipnoans.
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1.3. Areas of Interest

All information on aquatic animal welfare is useful for aquaculture, fisheries, research,
and exhibition. Regardless of the specific objectives of each of these areas, improving
animal welfare has a series of clear advantages. Aquatic animals living in adequate con-
ditions present better growth rates and feed optimization and are less prone to diseases,
amongst other benefits [61]. These factors are of paramount relevance in aquaculture,
where the benefits come from having lower expenses, including feeding and treatment of
diseases [62,63]. In fisheries and aquaculture, attention must be paid to the slaughter of
animals, since it has been seen that the quality of the meat decreases when the animal is
stressed before its death [64–66]. Moreover, in catch-and-release fisheries, it is important to
minimize stress on animals so that they can fully recover from the process and return to
their natural environment [31,57,60,67,68]. Keeping aquatic animals in the best possible
conditions during research experiments is mandatory, since the results may be affected
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by the care conditions [69–72]. Finally, the legislation seems to be less strict in aquatic
organisms that serve as pets or are used in exhibition centers, such as aquaria. However,
keepers of ornamental animals benefit from animal welfare knowledge, since their purpose
is to maintain organisms in captivity so that they show their best performance, as well as
natural behaviors [73]. All of these aspects are greatly affected by stress and the physiologi-
cal responses described above. At this point, it is important to know the main physiological
characteristics of taxa, as well as how stress responses differ among taxonomic groups, to
properly recognize stressful situations and be able to act accordingly.

2. Taxonomic Differences
2.1. Crustaceans

Although there is an arduous debate about whether crustaceans feel pain and suf-
fering, and whether their welfare should be regulated through legislation resulting from
consumer demand [74], there are a number of tools to assess their stress physiology [57].
Due to the vast industry associated to crustaceans (mostly aquaculture and fisheries), some
issues are worth considering regarding the maintenance of physiological homeostasis, if
only to improve the economic performance of the companies. Crustaceans show a complex
endocrine regulation that includes the crustacean hyperglycemic hormone (CHH), which
regulates various aspects of growth, reproduction, and metabolism [75,76]. Short- and long-
term changes in environmental conditions may result in endocrine disruptions that modify
the cascade of physiological responses these hormones regulate. Thus, it has been described
that inadequate maintenance conditions can lead to impaired growth of animals [77]. Acute
stress responses also modify circulating CHH levels as a primary stress response [78]. Sec-
ondary stress responses include mobilization of energy metabolites from storage tissues
to the circulatory system [57,79], increasing lactate due to anaerobic metabolism of car-
bohydrates and thus modifying hemolymph pH [55,79], and O2/CO2 transport through
changes in hemocyanin concentration and/or affinity to these gasses [57,80,81]. Perceived
stressors also induce changes in the innate immune system of crustaceans [42,57], leading
to an overload of the system if the situation is prolonged in time, which may cause death of
the animal. Moreover, some decapods seem to perceive threat and react by triggering the
described physiological stress responses even if the threat is not real [82]. This information
could serve for future debates about suffering in these animals, although our purpose here
is simply to provide physiological evidence supporting homeostasis imbalances that may
lead to individual health and growth issues, all related to welfare.

2.2. Cephalopods

The central nervous system of cephalopods is more developed than that of other inver-
tebrates, and it is currently considered that they experience pain, suffering and anguish [20].
For these reasons, in certain countries such Australia, Canada, New Zealand, Norway,
Switzerland, and in the European Union, this group of mollusks has been included in the
legislation that regulates welfare in animal experimentation [6]. This situation can lead
to confusion and, unintentionally, erroneously (or at least not scientifically proven) imply
physiological similarities with vertebrates. For example, a number of studies described
physiological responses to steroid hormones (sexual hormones and corticosteroids) in
mollusks. However, this is under debate because steroids are not produced by inverte-
brates [83,84]. What has been shown is that cephalopods react to stressful situations by
secreting neuroendocrine messengers (including catecholamines, such as noradrenaline
and dopamine) in the hemolymph after an acute-stress [51]. Stress hormones in mollusks,
as seen in vertebrates, can have both enhancing and suppressing effects on immune func-
tion [85]. Therefore, exposure to heavy metals or to capture induces the activation of the
phenoloxidase activity [86], but may have a stimulatory/inhibitory/neutral influence in
other innate immune responses including lysozyme, protease, antiprotease, or peroxidase
activities depending not only on the stressor but also on the cephalopod species [31,87,88].
Environmental factors, such as temperature, highlight the importance of oxygen supply
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in these taxa, and the pigment hemocyanin as a critical element in this process [89,90].
Moreover, hemocyanin concentration is also modified in stressful situations and serves as
a stress biomarker in cephalopods [31,91]. Biochemical composition of the animals varies
with their life stage, and some changes are observed in their storage tissues throughout
the year, due to reproductive performance [92]. However, constant hemolymph pH and
glucose levels (among other undescribed parameters) seems to be essential for the main-
tenance of metabolic homeostasis [31], as described in vertebrates. Cephalopods rely on
amino acids as the main energy source, although stored glycogen is also relevant, and are
mobilized after a stress challenge [31,33,93]. It should be mentioned, as an important differ-
ence compared to vertebrates, that acute-stress challenges do not increase lactate (neither
in hemolymph nor in muscle) in cephalopods as part of the secondary stress responses [31].
The latter information paves the way for the search for alternative physiological parameters
for the evaluation of stress in these animals. Finally, a very interesting methodology to
evaluate the physiological state of cephalopods could include the analysis of their dermal
mucus as a non-invasive technique, similar to those used with teleost fish [68,94].

2.3. Elasmobranchs

The interest in observing the welfare of elasmobranchs (sharks and rays) lies in
three specific areas: Research, fisheries, and exhibition of captive animals. These are
primitive vertebrates that are of great scientific interest for the study of evolution of certain
physiological strategies, such as the specialization of steroid hormones [95]. Moreover, as
key elements of marine (and some freshwater) ecosystems, it is important to maintain their
biodiversity at healthy levels [96,97]. Some countries have signed binding agreements to
release sharks captured as bycatch in certain fisheries [98,99], and efforts are being made
to minimize the damage suffered by the fishing process. The physiological recovery of
sharks is involved in the improvement of the survival rates after catch-and-release [60].
Recent advances in elasmobranch physiology highlight the release of catecholamines
(adrenaline and noradrenaline) and corticosteroids (1α-hydroxycorticosterone) into the
bloodstream as primary stress responses [53,100]. Secondary stress responses include
changes in circulating ion concentrations [101], pH, and urea as the main metabolite
controlling plasma osmolality levels in marine elasmobranchs [60,102]. While amino acids
are conspicuously of paramount importance as oxidative substrates in white muscle of
this taxa [103], carbohydrates have been shown to be relevant energy substrates after acute
stress challenges [53]. The analysis of certain blood parameters seems to offer a picture
of the physiological status of elasmobranchs at a certain moment, highlighting plasma
pH, glucose, lactate, and K+ levels as selected biomarkers. However, large differences are
described depending on the species [53,60,68,99,104], so that further studies are needed to
better describe short- and long-term stress responses of these animals and their relationship
to elasmobranch welfare.

2.4. Teleosts

The stress physiology of teleost fish is well characterized compared to other aquatic
taxa. Here, we summarize some physiological responses that teleosts experience under
stressful conditions, and their utility as a tool to assess welfare. As introduced in Section 1.2,
the endocrine cascades that include hypothalamus, pituitary, and chromaffin or interrenal
tissues, control the stress physiology in teleosts [105]. Once the CNS perceives the stressor,
catecholamines and cortisol are released into the bloodstream as primary stress responses,
although their concentrations vary depending on the species [21]. In short-term conditions,
the secondary responses elicited by these hormones are mainly directed towards energy
allocation to deal with the stressor and, among others, induce plasmatic hyperglycemia
and the increase in other metabolites, such as lactate and proteins. Taken together these
responses result in increased heart rate, gill vascularization, and hydro-mineral imbal-
ances [21]. If the stressor persists over time, tertiary responses affect the organism at
a complex level [21]. As a consequence, teleosts experience metabolic disorders, lower
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growth rates, immune-deficiencies, impaired development, reproductive disruptions, or
alteration of behavioral and social skills, that clearly compromise their welfare [21].

Special importance has been given to teleost aquaculture since there are multiple
factors that can cause stress to animals. Impaired welfare conditions reduce growth and
induce pathogen diseases, with the consequent reduction in benefits [106]. The literature
on physiological stress biomarkers in different cultured species and husbandry conditions
is extensive and constantly increasing. Classical stress parameters are related to the effects
derived from cortisol actions [50,61,107], and heat shock proteins as cellular responses [108].
Hypoxia and air exposure due to handling are common acute stress situations in aqua-
culture. For example, gilthead seabream (Sparus aurata) exposed to air for three minutes
increased plasma catecholamines (adrenaline and noradrenaline) and cortisol, and altered
the expression of genes involved in the endocrine response to stress [109]. A similar
response was also shown in meagre (Argyrosomus regius) in hypoxia and netting stress
situations, where higher plasma levels of cortisol, glucose, lactate, and proteins were de-
scribed [110]. Current approaches tend to assess physiological stress through non-invasive
methodologies. In this regard, a strong correlation exists between some biomarkers ob-
served in blood plasma and dermal mucus [110]. Similarly, cortisol can also be measured in
gills, scales, and feces [111]. Immune-system parameters have also been shown to be good
stress biomarkers in dermal mucus [112]. IgM levels, peroxidase, protease, and antiprotease
activities in skin mucus from S. aurata reflected the stress responses of crowding and hy-
poxia conditions [113]. Stunning and slaughtering processes are also observed to affect fish
physiology. As an example, CO2 narcosis and ice-slurry reduce glucose, lactate, or cortisol
levels, in comparison to asphyxia in the European seabass (Dicentrarchus labrax) [114]. The
stunning method and the conditions prior to slaughtering affect anaerobic metabolism of
muscle and induce changes in its pH, compromising the flesh texture and quality, which
may have detrimental effects on the economy of this industry and the welfare of these
animals prior to euthanasia [66,115].

The assessment of intermediary metabolism is also an important tool to assess welfare
in teleost aquaculture. Carbohydrate, lipid, and amino acid management is directly related
to both acute and long-term stress situations [116,117]. Therefore, transport processes
boost glycogen consumption, glycolysis, and gluconeogenesis pathways in the liver of
S. aurata [116]. This process also modulated lipid metabolism in the liver during and after
recovery from the stress situation, as it was reflected by triglycerides levels and GPDH and
HADH enzyme activities [116]. Similarly, the European eel (Anguilla anguilla) [118] and
the African catfish (Clarias gariepinus) [119] showed higher concentrations of plasma non-
esterified fatty acids after transport. An inadequate stocking density is probably the most
common long-term stress situation in teleost aquaculture. Both low [120] and high stocking
densities [117] can induce tertiary stress responses that reduce growth. This effect is directly
related to the allocation of energy and the consequent consumption of stored metabolites
in muscle. This reduction of welfare conditions is reflected by the inhibition of the GH/IGF
system [121], and by an enhanced catabolism of lipids and amino acids [117]. Stocking
density can also modulate other cellular and immune responses [122,123]. Therefore,
oxidative stress responses in plasma (i.e., CAT, SOD, GR, GST), and Hsp70 expression
in brain, liver, and kidney can be used as biomarkers of long-term stress situations [122].
Alternatively, key components of the innate immune system (i.e., IL-1β, LZM, TNF, TLR-3,
and MHC) determined in fish skin mucus also reflected the negative effects of long-term
impaired welfare [123]. However, stocking density-derived stress in aquaculture must
be assessed cautiously, as the responses are different among species and depend on the
rearing system [124].

In the case of fisheries, the literature on physiological responses remains limited in
comparison to aquaculture. The effect of capture, in terms of gear type, capture duration,
or emersion time, has been described for some species and cases [61,125]. For example,
angling induces lactate and glucose increases in plasma of Japanese meagre (Argyrosomus
japonicus) [126], while it also increases cortisol and plasma osmolality in Southern bluefin
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tuna (Thunnus maccoyii) [127]. Similarly, angling time in white marlin (Kajikia albida) was
associated with hematocrit, and Na+, K+, Mg2+, Ca2+, and Cl− changes in the blood [128]. A
recent study simulated crowding stress during seine capture of Atlantic mackerel (Scomber
scombrus), showing physiological changes related to anaerobic metabolism in muscle,
affecting flesh quality [129]. A similar effect was also described in Atlantic cod (Gadus
morhua) after trawling [130]. These studies show the relevance of assessing welfare in
fisheries from a physiological point of view, as capture conditions affect flesh quality and
may have an impact on their final sale.

The need for physiological tools to better assess aquatic animal welfare should also be
taken into account in other fields, including ornamental fish exhibition in public aquaria.
Caretakers make great efforts to create the best artificial environments and guarantee fish
welfare by controlling water quality parameters. However, external factors such as the
unavoidable noise of visitors can increase cortisol levels, as has been described for the lined
seahorse (Hippocampus erectus) [131]. It is noteworthy that apart from the study of classical
biomarkers [61,132], recent reviews addressed new approaches using transcriptomics,
proteomics, and metabolomics to assess long-term welfare of teleosts [133,134].

2.5. Dipnoans

The Dipnoi belong to the group of sarcopterygian fish, also known as lungfish. These
species are considered the closest living relatives of the tetrapods [135]. In this regard,
the study of their physiological strategies is important to understand the evolution of
terrestrial vertebrates. As a link between early vertebrates (including teleost fish, such
as the widespread scientific model zebrafish (Danio rerio) and amphibians, lungfish show
similarities between both groups. For example, the South American lungfish (Lepidosiren
paradoxa) contains both cortisol and aldosterone in its blood [136]. As described before,
cortisol is considered a primary stress response hormone in teleosts (acting both as a gluco-
and a mineral-corticoid), while aldosterone is typical of amphibians and reptiles (and
absent in teleosts, elasmobranchs, and agnathans) [95]. All six species of living lungfish are
obligate air breathers, and have the ability to enter a prolonged estivation period during
the dry season [137,138]. Aldosterone, which is a mineralocorticoid hormone in terrestrial
vertebrates related to Na+ homeostasis, seems to decrease not only sodium but also glucose
circulating concentrations in the estivating African lungfish Protopterus annectens [139].
These responses mediated by aldosterone levels have also been described in starving
frogs [139]. However, there is no evidence to date describing glucocorticoid responses
in these species. It could be assumed that cortisol is the main glucocorticoid hormone in
lungfish due to its high plasma concentrations, although they also produce corticosterone,
cortisone, 11-deoxycortisol, 11-deoxycorticosterone, and 11-dehydrocorticosterone [136].
However, there remains a lack of knowledge about which hormone is the main manager of
energy metabolism in these species. Moreover, although it has been described that African
lungfish rely on both carbohydrate and amino acid stores during estivation [140,141],
there are no studies describing secondary or tertiary stress responses in this evolutionarily
interesting taxonomic group. Unravelling physiological responses to stress in lungfish
could serve to better understand the basis of aquatic animal welfare by acting as a link
with terrestrial vertebrates, of which there is plenty of literature.

3. Future Approaches

It is clear that some sectors of society demand a better quality of life for all aquatic
animals that interact with humans. In the case of fisheries and aquaculture, consumers
are demanding more (environmentally) sustainable and fair-trade products, which also
includes animal care. There are interesting alternatives to improve/mitigate physiological
stress responses in aquaculture, such as the use of natural antioxidants [142], and other
dietary additives [117,143]. Similarly, the use of essential oils from plants with sedative
properties seems to attenuate the physiological responses inherent to fish handling and
cultivation [144]. However, the use of these natural compounds, as well as classical
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synthetic anesthetics, can evoke additional physiological side-effects, including alterations
in energy management [145] and oxidative stress status [146]. This shows that some
techniques used to reduce stressful situations in aquatic animals may exert physiological
responses that impair their welfare status. In any case, best caring/rearing conditions,
environmental enrichment and humane slaughter should be validated through in-depth
study of their physiological consequences.

Future regulations of aquatic animals´ welfare will need holistic approaches, includ-
ing proper descriptions of their physiological status. Studies with only few classical stress
responses should be viewed with skepticism, especially those in which glucocorticoid
levels are assessed as single biomarkers of welfare. These hormones show diurnal and
seasonal fluctuations that can lead researchers to unavoidable misinterpretations if they do
not consider the regular homeostasis of the animal. The interpretation of glucocorticoid
levels gain complexity with the variability derived from interspecific differences between
individuals, including “bold” and “shy” animals. Currently, there are some knowledge
gaps surrounding the physiological responses to stress in crustaceans, cephalopods, and
fish. Furthermore, depending on the taxa, the basal homeostasis remains unknown. For this
reason, and as an analytical approach, the processes that trigger homeostatic imbalances
should be studied. It is necessary to pay special attention to the sampling methodologies,
as the process itself can be stressful. With the exception of teleost fish, the primary re-
sponses to stress are practically unknown in the rest of the taxa reviewed here (crustaceans,
cephalopods, elasmobranchs, and dipnoans), and what is known about the secondary
responses is limited (Table 2). Future steps should include studying these responses to
stressful situations in order to unravel common patterns within each taxonomic group. In
this way, humans could anticipate situations that compromise the wellbeing of aquatic
organisms. The development of non-invasive, simple, and fast physiological techniques is
necessary for a future scenario of full coexistence between humans and animals, safeguard-
ing the welfare of all.

Table 2. Summary of selected useful physiological parameters to assess stress responses and welfare of aquatic animals
among different taxa (crustaceans, cephalopods, elasmobranchs, teleosts, and dipnoans).

Taxonomic Group Parameters References 1

Crustaceans
Crustacean hyperglycemic hormone (CHH). [75,76,78]

Hemolymph pH, hemocyanin, glucose, lactate. [55,57,79–81]
Innate immune parameters (granulocytes, proPO, peroxidase or lysozyme activities). [42,57]

Cephalopods

Neuroendocrine factors (noradrenaline, dopamine). [51]
Innate immune parameters (PO-like, proteases, antiproteases, peroxidase or lysozyme

activities). [31,86–88]

Hemolymph pH, hemocyanin. [31,89–91]
Glucose, glycogen, amino acids, NOT lactate. [31,33,92,93]

Dermal mucus parameters (glucose, lactate, pH). [69,94]

Elasmobranchs

Catecholamines (adrenaline and noradrenaline). [100]
Corticosteroids (1α-hydroxycorticosterone). [53]

Plasma pH, osmolality, ions, energy metabolites. [53,60,101,102]
Muscle amino acids and carbohydrates (glycogen). [103]

Teleosts

Neuroendocrine factors (CRH, TRH, POMCs, etc.). [114,121]
Plasma catecholamines and cortisol. [21,50,61,107,109]

Cortisol in gills, scales or feces. [111]
Acid-Base balance. [66,115]

Hydro-mineral imbalances. [128]
Plasma hematocrit and energy metabolites. [110,126,127]

Plasma oxidative stress (CAT, SOD, GR, GST, etc.). [122]
Cellular parameters (Hsp70) in brain, liver and kidney. [108,122]

Mucus cortisol and energy metabolites. [110]
Plasma and skin mucus innate immune parameters. [112,113,122,123]

Intermediary metabolism in liver and muscle. [116–119]
Growth rate, condition index, hepatosomatic index. [106,117,120]
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Table 2. Cont.

Taxonomic Group Parameters References 1

Dipnoans

Glucocorticoids (cortisol, corticosterone, cortisone, 11-deoxycortisol,
11-deoxycorticosterone and 11-dehydrocorticosterone) 2. [136]

Mineralocorticoids (aldosterone) 2. [136,139]
Ions, carbohydrates and amino acids. [139–141]

1 These are a selected group of scientific publications, mostly reviews. 2 Note that the role of this hormones is still not clear in this
taxonomic group.

4. Conclusions

To assess the animal welfare of aquatic species, physiology is an important tool to
consider. Physiological responses to suboptimal conditions are widespread among taxa,
and involve changes in the energy management and the immune system. Although
these responses vary between species, this review gathered the most relevant parameters
related to stress in crustaceans, cephalopods, elasmobranchs, teleosts, and dipnoans. This
knowledge can be useful for the management of human activities that involve the use of
live aquatic animals.
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