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Simple Summary: Genetic alterations, such as RET/PTC and AGK-BRAF fusions, are frequent events
in pediatric papillary thyroid carcinoma (PTC). However, their role as prognostic markers in pediatric
PTC is still under investigation. In this study, we present a patient harboring three tumor foci with
distinct genetic alterations (AGK-BRAF, RET/PTC3 and an absence of canonical alterations) that were
investigated for DNA structure and telomere-related genomic instability. These preliminary results
highlight that AGK-BRAF fusion likely affects nuclear architecture, which might explain a more
aggressive disease outcome observed in pediatric PTC cases with AGK-BRAF fusion.

Abstract: The spectrum and incidence of gene fusions in papillary thyroid carcinoma (PTC) can differ
significantly depending on the age of onset, histological subtype or radiation exposure history. In
sporadic pediatric PTC, RET/PTC1-3 and AGK-BRAF fusions are common genetic alterations. The
role of RET/PTC as a prognostic marker in pediatric PTC is still under investigation. We recently
showed that AGK-BRAF fusion is prevalent in young patients (mean 10 years) and associated with
specific and aggressive pathological features such as multifocality and lung metastasis. In this pilot
study, we report a unique patient harboring three different foci: the first was positive for AGK-
BRAF fusion, the second was positive for just RET/PTC3 fusion and the third was negative for both
rearrangements. To investigate whether AGK-BRAF and RET/PTC3 are associated with genomic
instability and chromatin modifications, we performed quantitative fluorescence in situ hybridization
(Q-FISH) of telomere repeats followed by 3D imaging analysis and 3D super-resolution Structured
Illumination Microscopy (3D-SIM) to analyze the DNA structure from the foci. We demonstrated
in this preliminary study that AGK-BRAF is likely associated with higher levels of telomere-related
genomic instability and chromatin remodeling in comparison with RET/PTC3 foci. Our results
suggest a progressive disruption in chromatin structure in AGK-BRAF-positive cells, which might
explain a more aggressive disease outcome in patients harboring this rearrangement.

Keywords: papillary thyroid carcinoma; pediatric thyroid cancer; nuclear architecture; super-
resolution microscope; AGK-BRAF; RET/PTC; biomarkers; genomic instability
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1. Introduction

Thyroid carcinoma is the most frequent malignancy of the endocrine system in pedi-
atric patients (≤18 years), where papillary thyroid carcinoma (PTC) is the most common
subtype (80–90%) [1,2]. The most prevalent genetic alterations found in pediatric PTC
are RET/PTC fusions (~41% in sporadic cases, ~58% in radiation-induced cases), where
RET/PTC1 and RET/PTC3 are the most recurrent rearrangements [1,3]. These rearrange-
ments have been associated with aggressive disease (extrathyroidal extension, lymph node
and pulmonary metastasis) [4]. Since they have already been described in benign thyroid
tumors, mainly in radiation-induced cases [4], the role of RET/PTC as prognostic marker in
sporadic pediatric PTC is still unclear.

AGK-BRAF [inv (7) (q34)] fusion was originally identified in radiation-exposed PTC
cases [5]. Our previous studies have shown that AGK-BRAF fusion is a recurrent event in
sporadic pediatric PTC cases (19%), and is associated with younger age and pulmonary
metastasis of sporadic pediatric PTC [6,7]. Although AGK-BRAF has already been asso-
ciated with the pathogenesis and progression of sporadic PTC cases, its role in genomic
instability has not yet been investigated.

Changes in the telomere nuclear architecture and DNA structure remodeling are
important features of genomic instability, malignant transformation and aggressiveness [8].
Telomere-related genomic instability plays an important role in cancer and can be used
to unmask disease heterogeneity [8]. Moreover, super-resolution microscopy has made
it possible to visualize subcellular organization, e.g., the nuclear DNA [9]. In this pilot
study, we compared telomere signatures and changes in the chromatin structure of three
individual tumor foci that harbored different genetic events (AGK-BRAF or RET/PTC3) to
better understand their role in genomic instability in pediatric PTC.

2. Results
2.1. Patient Description

A 13-year-old girl with a follicular variant of PTC underwent total thyroidectomy at
the hospital of Santa Casa de São Paulo, SP, Brazil. The surgery was followed by four doses
of radioiodine (cumulative dose 1150 mCi) treatment. A histological examination showed
a bilateral and multifocal tumor with the largest focus measuring 5 × 4 × 2 cm, capsular
and angiolymphatic invasion, extrathyroidal extension and lymph node involvement. The
patient had five tumor foci, but only three were available for the analysis. Additional
findings included lung metastasis at diagnosis and persistent disease during follow-up.
There was no family history of thyroid cancer or exposure to radiation. In a previous
molecular analysis from a pediatric PTC cohort [10], the patient exhibited the presence of
AGK-BRAF and RET/PTC3 rearrangements in two independent foci of the primary PTC,
shown in Table 1. A third focus of the primary PTC was also available for analysis, but
no genetic alterations were found. Lymph node and lung metastases samples were not
available for the analysis.

Table 1. Genetic alterations observed in each focus of the pediatric PTC assessed in this study.

Genetic Alteration

Focus 1 AGK-BRAF
Focus 2 No alterations **
Focus 3 RET/PTC3

** RAS, BRAF V600E, RET/PTC1-3, AGK-BRAF, ETV6-NTRK3 [10].

2.2. 3D Analysis of Nuclear Telomere Organization Indicates Increased Telomere-Related Genomic
Instability in the AGK-BRAF Positive Focus

Critically short telomeres are hotspots resulting from incorrect recombination, leading
to chromosomal instability and malignant transformation [11]. We used 3D quantitative
fluorescence in situ hybridization (Q-FISH) to analyze the telomere organization within
different foci, as shown in Figure 1. We named as focus 1 the AGK-BRAF-positive, as focus 2
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the negative for AGK-BRAF and RET/PTC3 fusions (and other investigated alterations [10]),
and as focus 3 the RET/PTC3-positive, shown in Table 1.
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Figure 1. Images from the quantitative fluorescence in situ hybridization (Q-FISH) of the three foci, showing the 2D raw
image (left panel) and the 3D deconvolved nuclei (right panel). The right panel shows the representative 3D nuclear
telomere distribution (red signals) with and without the counterstained nucleus (blue). In this figure, we can observe the
progressive change of 3D telomere nuclear architecture from focus 1 to focus 3.

Telomere parameters comparisons among foci 1, 2 and 3 are shown in Figure 2.
Focus 1 showed higher number of telomere signals (p = 0.0009) and telomeric aggregates
(TA) (p = 0.0089) and higher total intensity of signals (p = 0.0005) and a/c ratio (p < 0.0001)
in comparison with focus 3, as seen in Figure 2a–d,f. The comparison between foci 1 and 2
showed that focus 2 had higher nuclear volume (p < 0.0001), found in Figure 2e. Between
foci 2 and 3, focus 2 had higher nuclear volume (p = 0.0024) and higher a/c ratio (p = 0.0016)
than 3. Figure 2g shows that no difference was observed in other parameters assessed.
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  Figure 2. Histogram of the distribution of total number of telomere signals (a); total number of telomeric aggregates (TA)

(b); av-erage intensity of signals (c); total intensity of signals (d); nuclear volume (e) and a/c ratio (f). In (g), we show the
p-values for each comparison made in pairs. LS Mean: least square means. SE: standard error. * p < 0.05.

2.3. Three-Dimensional Structured Illumination Microscopy (3D-SIM) Measurements Show
Significant Changes in DNA Structure in the AGK-BRAF-Positive Focus

To investigate changes in the DNA structure and the presence of DNA-poor spaces, we
used super-resolution imaging and granulometry-based measurements [12]. Granulometry
quantified the size distribution of DNA structure and DNA-poor spaces on interphase
nuclei. SIM-reconstructed images are presented in Figure 3 (left panel), and the DNA
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organization, which can be interpreted from the granulometry curves that demonstrate
cumulative distributions of granule sizes, is shown in Figure 3 (right panel). Focus 1
showed larger DNA structures and less homogeneous DNA distribution than foci 2 and 3
(p < 0.001 for both) (right panel). Moreover, focus 1 presented more DNA-poor spaces than
foci 2 and 3 (p = 0.00832 and p = 0.00579) (right panel), which was illustrated in the nuclei
from SIM images (left panel). No difference was observed between foci 2 and 3 (p = 0.115,
DNA structure; p = 0.511, DNA-poor space). 

2 

 Figure 3. Representative Structured Illumination Microscopy (SIM) images for foci 1, 2 and 3 (left
panel) and the granulometry comparisons between the foci for DNA structure (right top panel) and
DNA-poor spaces (right bottom panel).

3. Discussion

AGK-BRAF fusion is a recurrent event in pediatric PTC [6]. However, the mechanism
by which AGK-BRAF promotes an aggressive phenotype is still unclear. Telomere-mediated
genomic instability and chromatin reorganization have been described in tumor cells
and correlate with tumor stage and malignant transformation [13]. In this study, we
macrodissected three foci of the PTC that were likely to represent the tumor, and examined,
for the first time, the effect of different genetic alterations on the telomere organization
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and chromatin structure. One important conclusion from this study is that representative
regions of multifocal PTC may not be entirely informative about overall tumor histology
and biology.

Our telomere analysis revealed that focus 1, which harbors AGK-BRAF, contained
higher numbers of telomeres, total intensity of signals and a/c ratio, and more TA when
compared to focus 3 with RET/PTC3 fusion. The presence of more telomeres and telomere
fusions in the AGK-BRAF focus illustrates genetic aberrations characteristic of cancers,
including aneuploidy and gene loss by the breakage-fusion-bridge events initiated by
telomere dysfunction. BRAF plays an important role in mitosis, mediating proper spindle
formation and activation of the spindle assembly checkpoint. Interesting, the BRAF V600E
mutation, which leads to constitutive activation of the BRAF kinase, also induces chro-
mosome mis-segregation resulting in aneuploidy [14]. Importantly, BRAF V600E highly
activates MAPK pathway in comparison with RET fusion oncoproteins [15]. This is due to
unresponsiveness to the negative feedback of activated ERK [15].

Although we did not observe significant differences in the average intensity of telom-
ere signals, total intensity was higher in the focus 1 compared to focus 3. The increased
total intensity (a sum value of all intensities in a cell) could have been the result of higher
numbers of telomere signals and TA, rather than increased telomere length. Interestingly,
focus 2 presented with higher nuclear volume than foci 1 and 3. High nuclear volume
or nuclear size or shape are correlated with poor prognosis and progression of some ma-
lignancies [16,17]. Cancer cells with high nuclear volumes are often classified as tumors
in advanced stages, but the mechanisms behind nuclear volume regulation are still un-
clear. The a/c ratio represents the cell cycle distribution and is correlated with proliferation
rates [18]. Increased a/c ratio found on focus 1 (AGK-BRAF) indicated high proliferation
levels. The higher rates in focus 1 could also have been related to the activation of the
MAPK pathway induced by the BRAF fusion. Although we did not perform Ki-67 staining
to compare the a/c ratio, it has been shown that the proliferation index measured by Ki-67
staining is extremely similar to the a/c ratio measured with TeloView®, presenting 98% of
concordance between the analysis [19].

Super-resolution imaging can reveal features of carcinogenesis [20]. Our 3D-SIM
results showed important changes in the nuclear structure in the focus 1 compared to foci 2
and 3, with more DNA structure and DNA-poor spaces (spaces void of DNA structure).
These data suggested that AGK-BRAF cells present an increased packaging of the DNA
and have more DNA than the other foci. This result aligned with our telomere data, which
showed more telomere signals and probably more chromosomes. Previous studies have
shown that the number of DNA-poor spaces increases in tumor cells [12,20–22], suggesting
chromatin remodeling. However, these DNA-free interchromatin areas could be nucleoli,
which display the same morphology as DNA-poor spaces and could also be associated
with the absence of DNA. We did not perform any staining with antinucleolin antibody
or upstream-binding factor (UBF) to differentiate the DNA-poor spaces from nucleoli, a
limitation to our study. The granulometry program measures DNA content and absence of
DNA signals, not differentiation between DNA-poor spaces and nucleoli. Therefore, the
increased number of DNA-poor spaces in the nuclei from focus 1 compared to foci 2 and 3
could be also a consequence of a hypertrophy of nucleoli, which has been correlated with
cell proliferation and growth in malignant tumors [23].

Additionally, none of the previously investigated molecular alterations [10] were
identified in focus 2. Interestingly, telomere analysis showed no differences between foci
1 and 2 in four telomere parameters (except for nuclear volume). On the other hand, in
the 3D-SIM analysis, focus 2 showed a similar structure as focus 3. Further analysis of this
focus is necessary to better understand the nature of its genetic background and how it
influences nuclear organization and DNA structure.

To conclude, SIM data combined with the 3D telomeric signatures provided a clear
discrimination between AGK-BRAF and RET/PTC3 fusions, suggesting distinct levels of
genomic instability and nuclear organization. Although additional data is needed to
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support our results, AGK-BRAF fusion is likely associated with a more unstable genetic
profile, corroborating with our previously reported data associating this rearrangement
with poor prognosis [6].

4. Materials and Methods
4.1. Patient Samples

Tissue sections (5-µm thickness) from each focus, shown in Table 1, were obtained
from formalin-fixed, paraffin-embedded (FFPE) blocks. The selection of the areas from
the different tumor foci was performed from Hematoxylin & Eosin (H&E) slides by a
pathologist of the Department of Pathology, UNIFESP, as previously described [10]. The
Research Ethical Committees from the Universidade Federal de São Paulo and Santa Casa
de Misericórdia de São Paulo approved the study (CEP/UNIFESP: 0466/2019).

4.2. 3D Telomere Q-FISH, Image Acquisition and Analysis using TeloView® Software Platform

Three-Dimensional Q-FISH was performed following a previously published proto-
col [24]. In summary, the FFPE tissue sections were deparaffinized by xylene (3 × 10 min),
followed by two, 10-min incubations in 100% ethanol. After being air dried, the slides
were incubated in 0.2 N HCl (37 ◦C—30 min) and washed while shaking in ddH2O and
2x saline-sodium citrate (SSC) buffer (5 min each) at room temperature (RT). Then the
tissues were pre-treated in 1M NaSCN (80 ◦C—30 min) and washed twice while shaking
in 2x SSC (RT—5 min each). The samples were digested using 1 mg/mL pepsin in 0.2 N
HCl (37 ◦C—10 min) and washed twice in 2X SSC (RT—5 min each), while shaking. Then
the slides were dehydrated in a series of ethanol (70%, 90% and 100%—5 min each) and
air dried. Eight microliters of a telomeric TTAGGG peptide-nucleic acid (PNA) probe
conjugated to a Cyanine 3 (Cy3) fluorophore (DAKO, Glostrup, Denmark) were applied
onto the tumor areas. Co-denaturation of the DNA and the probe was performed by
incubating the slides at 80 ◦C for 3 min, followed by hybridization, at 37 ◦C for 2 h, using a
HYBrite Denaturation and Hybridization System (Vysis; Abbott Diagnostics, Des Plains,
IL, USA). In order to remove the excess nonhybridized probe, the slides were washed
twice while shaking in 70% formamide/10 mM Tris-HCl (pH 7.4) (RT—15 min each). Then
they were washed while shaking once in 0.1X SSC at 55 ◦C and twice in 2X SSC/0.05%
Tween-20 (RT—5 min each. Lastly, the slides were counterstained using 50 µL of 4′,6-
diamidino-2-phenylindole (DAPI) (1 µg/mL) and incubated in the dark for 3 min. Excess
DAPI was rinsed with ddH2O, and slides were mounted with 22 × 22 mm coverslips using
Vectashield mounting medium (Vector Laboratories, Burlington, Ontario, Canada).

One hundred cells from each focus were imaged using a Zeiss AxioImager Z2 mi-
croscope equipped with a Zeiss AxioCam MRmm Rev 3 camera (Carl Zeiss Canada Ltd.).
The Cy3 filter was used at a constant exposure time (241 ms), while exposure time for
the DAPI filter varied. Images were captured in 60 z-stacks at 200-nm intervals to create
the 3D images of the cell nuclei. The program AxioVision Release 4.8.2 (Carl Zeiss, Ger-
many) was used for imaging and further imaging processing, using a constrained iterative
deconvolution algorithm.

TeloView® v1.03 software program [18] (Telo Genomics Corp., Toronto, ON, Canada)
was used to analyze the deconvolved images. TeloView® measures six parameters [18]:
number of telomere signals; total intensity of signals; average intensity of signals (telomere
length); number of aggregates (cluster of telomeres found in close proximity to each other
that, at 200 nm optical resolution, cannot be further resolved as separate entities); a/c ratio
(cell cycle distribution as being G0/G1, S or G2, according to the position of the telomeres
in the cell nuclei; the higher the a/c ratio, the greater the proportion of cells in proliferations);
and nuclear volume (measured by nuclear DAPI staining in the x, y and z dimensions).
The parameters were compared among the three foci using a nested factorial analysis
of variance followed by a least-square means multiple comparison. The p-value for the
overall test of differences between the three foci was indicated by graphical presentations.
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Chi-square analysis was used to compare the percent of interphase telomere signal intensity
as defined quartile cut-offs. A p < 0.05 was defined as statistically significant.

4.3. 3D-SIM Slide Preparation, Image Acquisition and Analysis

For 3D-SIM, the FFPE samples were deparaffinized using xylene and washed in 1x
PBS. Slides were incubated overnight with 10 µg/mL DAPI, in a 37 ◦C humid chamber
and then washed in 1X PBS, air dried and mounted with 18 × 18 mm high performance
coverslips (thickness 1 1/2, 0.170 +/− 0.005 mm) (Carl Zeiss Canada Ltd.) using Vectashield
mounting medium (Vector Laboratories). We used a Zeiss Elyra PS1 SIM equipped with a
Plan-Apochromat 63x/1.40 oil immersion objective, an Andor EM-CCD iXon 885 camera
and a 1.6X tube lens (all from Carl Zeiss, Canada) to image 50 cells from each focus. DAPI-
stained images were captured using 405 nm laser excitation, a 23-µm diffraction grating
and a SR Cube 07 filter cube. Images were acquired at 91-nm intervals between the z-stacks
to create the 3D images from the nuclei. Images were reconstructed by ZEN 2012 black
edition (Carl Zeiss, Jena, Germany) using the standard settings. Image processing was
performed using MATLAB software (MathWorks, Natick, MA, USA). A central z-plane
was manually selected and exported as a TIFF file. We used the granulometry program
to measure changes in the DNA structure and the presence of DNA-poor spaces with a
morphological sieve applied to the error-function clipped images [12]. DNA-poor spaces
are DNA-free interchromatin areas that are observed in increased amounts in malignant
cells [12]. A statistical analysis was performed by comparing the distributions using two-
sided, two-sample Kolmogorov–Smirnov (KS) tests to determine any differences. A p < 0.05
was defined as statistically significant.
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Abbreviations

3D-SIM 3D super-resolution structured Illumination Microscopy
Q-FISH Quantitative fluorescet in situ hybridization
PTC Papillary thyroid carcinoma
SIM Structured illumination microscopy
TA Telomeric aggregates
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