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Simple Summary: Did you know that HIV may directly cause organ damage despite the effects of
highly active antiretroviral therapy (HAART)? Due to the potency of current HAART, this may look
questionable; however, excessive alcohol use may increase the risk of HIV-induced organ damage.
While the most implicated organ in the gastrointestinal system is the liver, the pancreas may also be
affected. In this study, we aimed to disclose the mechanisms of pancreatitis in alcohol-abusing HIV
patients, which is crucial for developing an effective therapeutic strategy. From the literature, we
found that alcohol-induced intracellular zymogen activation was mediated by calcium and lysosome
hydrolases leading to acinar necrosis. Similarly, HIV entry into pancreatic acinar cells mediates
ER and oxidative stress, which triggers acinar necrosis. Infiltration of immune cells has also been
reported to induce necrosis. Therefore, effective therapeutic regimens for HIV and alcohol-induced
pancreatitis should inhibit HIV entry and ameliorate alcohol’s toxic effects on the pancreas.

Abstract: Multiorgan failure may not be completely resolved among people living with HIV despite
HAART use. Although the chances of organ dysfunction may be relatively low, alcohol may potentiate
HIV-induced toxic effects in the organs of alcohol-abusing, HIV-infected individuals. The pancreas
is one of the most implicated organs, which is manifested as diabetes mellitus or pancreatic cancer.
Both alcohol and HIV may trigger pancreatitis, but the combined effects have not been explored. The
aim of this review is to explore the literature for understanding the mechanisms of HIV and alcohol-
induced pancreatotoxicity. We found that while premature alcohol-inducing zymogen activation is a
known trigger of alcoholic pancreatitis, HIV entry through C-C chemokine receptor type 5 (CCR5)
into pancreatic acinar cells may also contribute to pancreatitis in people living with HIV (PLWH).
HIV proteins induce oxidative and ER stresses, causing necrosis. Furthermore, infiltrative immune
cells induce necrosis on HIV-containing acinar cells. When necrotic products interact with pancreatic
stellate cells, they become activated, leading to the release of both inflammatory and profibrotic
cytokines and resulting in pancreatitis. Effective therapeutic strategies should block CCR5 and
ameliorate alcohol’s effects on acinar cells.

Keywords: HIV; pancreatic acinar cells; pancreatic stellate cells; ethanol metabolites; pancreatitis;
diabetes mellitus; pancreatotoxicity

1. Introduction

HIV remains a serious public health issue even 40 years after the first diagnosed
AIDS case in the US. Approximately 76 million people have been infected with HIV since
1981 [1]. In 2018, 38 million people were infected globally [2]; 3% of these infections were
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in the United States, with an estimated 36,400 new infections [3]. Approximately 80,000
AIDS-related deaths were reported in 1992 [4], with a consistent decline to 5698 deaths in
2017 [5]. The decline in AIDS-related mortality is strongly associated with the emergence of
highly active antiretroviral therapy [6–9], which has led to a significant increase in life ex-
pectancy [10–12]. However, as life expectancy of people living with HIV (PLWH) matches
that of the general population [13], non-AIDS-related morbidities [12,14], such as cardiovas-
cular disease [15], liver disease, suicide [16], diabetes [17–23] and alcohol abuse [24] begin
to emerge. Diabetes is one of the leading causes of comorbidity among PLWH. This may
also be a risk factor for the incidence of other cardiometabolic diseases [9,25]. The etiologies
of diabetes in PLWH are multifactorial [26–29]. However, pancreatitis is one of the estab-
lished risk factors for diabetes [30–33]. The incidence of pancreatitis is 35–800 times higher
among AIDS patients—as compared to the general population [34–36]—and the incidence
of diabetes from preexisting cases of pancreatitis is 10–83% [37]. Hence, the prevalence of
diabetes among PLWH is 4.5–14%, which is higher than the 2% observed in the general
population [38–41]. Although recent studies have implicated antiretroviral therapy as the
major cause of pancreatitis in the context of HIV [42–45], this may be disputed [46–48]
due to significant clinical evidence from the pre-HAART era, which shows that HIV itself
may be a potent causative agent for pancreatitis [34,49,50]. Conflicting evidence on the
pathogenesis of pancreatitis among PLWH [49] means that it is imperative to evaluate avail-
able scholarly evidence on the mechanisms that lead to it. Previous studies have reported
strong correlations between alcohol abuse and other non-AIDS-related morbidities [50].
This suggests that alcohol plays a significant role in the pathogenesis of non-AIDS-related
comorbidities. Alcohol use disorder (AUD) among PLWH is 2–3 times higher than the
general population [50] and approximately 12% of PLWH are heavy drinkers [51]. While
alcohol is one of the inducers of pancreatitis, pancreatitis usually requires other coexist-
ing risk factors (e.g., HIV infection) to progress to diabetes [52]. The mechanisms of the
toxic synergism between alcohol and HIV in pancreatic cells (acinar cells) that leads to
pancreatitis have not been properly elucidated. Exploring the mechanisms of HIV- and
alcohol-induced pancreatitis is fundamental for developing therapeutic regimens among
alcohol-abusing HIV patients. Hence, this narrative review will uncover the role of alco-
hol in exacerbating necrosis in HIV-containing acinar cells, which becomes the basis for
pancreatic damage.

Our objective is to elucidate the pivotal events leading to alcohol- and HIV-induced
pancreatitis. We hypothesize that HIV entry and infectivity of acinar cells is potentiated
by alcohol metabolites, which leads to the generation of oxidative stress and endoplasmic
reticulum (ER) stress. This, in turn, results in necrosis, thereby triggering the activation
of pancreatic stellate cells and progression to pancreatic damage. In this review, we will
discuss the mechanisms leading to the toxic synergism between alcohol and HIV, which
leads to pancreatic inflammation and damage.

2. Epidemiology of Pancreatitis and Diabetes

Pancreatitis is a localized inflammation of the pancreas commonly mediated by the
premature activation of digestive enzymes retained in the pancreas. Even though this condi-
tion may resolve by itself within days, the persistence results in pancreatic dysfunction and
failure of other remote organs/systems [49]. Pancreatitis occurs in two forms: acute and
chronic. It was recently discovered that chronic pancreatitis is a consequence of repeated
episodes of an acute case, indicating that both are the same disease at different stages [53].
A meta-analysis conducted by Xiao et al., reported the global, pooled incidences of pancre-
atitis as follows: acute pancreatitis, 34 cases/100,000; chronic pancreatitis, 10 cases/100,000;
pancreatogenic diabetes mellitus, 6 cases/100,000 [54]. While the aforementioned rates
reflect the combined incidence of pancreatitis, varying rates have been reported in different
settings. For example, Albania (5.6/100,000) [55], Czech Republic (17/100000) [56], Ger-
many (13/100000) [57] and the Netherlands (19.2/100,000) [58] reported lower incidences
of acute pancreatitis, while Croatia (30.2/100,000) [59], Denmark (35/100,000) [60], Scot-
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land (41.9/100,000) [61], Spain (67/100,000) [62], Finland (73.4/100,000) [63] and Poland
(100/10,000) [64] have reported higher rates. Meanwhile, the global prevalence of pancre-
atitis has continued to increase. In 1990, the prevalent cases numbered approximately three
million—and this rose to more than six million cases in 2017 [65]. While lifestyle factors
have been implicated in the upsurge in the rates of pancreatitis [66], adequate case reports
and access to quality data may be partly responsible for this notable rise. It suffices to say
that the global burden of pancreatitis is a lingering GI problem.

With respect to rates in the US, data from the Nationwide Inpatient Sample (NIS)
(which is the most robust database for all-payer in-patients and constitutes 85% of all
hospital discharges) was queried for the prevalence of pancreatitis between 1988 and 2004.
It revealed that while the average prevalence of acute pancreatitis was 49.2 cases/100,000,
it was only 8.1/100,000 for chronic pancreatitis [67]. Peery et al., expanded the study on
the burden of pancreatitis to include other high-quality national databases. They found
that acute pancreatitis accounted for the majority of hospitalizations, at approximately
280,000 patients [68]. These elevated rates, both globally and in the US, explain why
research on pancreatitis is of paramount importance.

The frequency of recurrent acute pancreatitis and consequent chronic pancreatitis was
estimated recently in a systematic review of cohort studies with a minimum of one-year
follow up. Interventional studies were not included in the study because interventions
will alter the natural shift that occurs between acute and chronic pancreatitis. In that study,
21% of patients had recurrent acute pancreatitis and 36% developed chronic pancreatitis
after initial acute pancreatitis [49]. The incidence of acute pancreatitis has been shown to
lead to multiple organ/system dysfunctions, affecting endocrine, exocrine and even bone
metabolism long after clinical resolution of pancreatitis [49].

Pancreatitis in any form has been frequently associated with diabetes. Data suggest
that even patients with mild acute pancreatitis (i.e., most patients with acute pancreatitis)
have at least a two-fold higher long-term risk of diabetes mellitus than people without a
history of pancreatitis [30,31]. Hence, pancreatogenic diabetes mellitus is the aggravation
of insulin deficiency induced by continuing inflammation and fibrosis of the exocrine
tissues. This implies that chronic pancreatitis is an established precursor of diabetes [69].
A single-center cohort study conducted in China, in which 445 participants were diagnosed
with chronic pancreatitis, revealed the frequency of diabetes development as 3.6%, starting
from the onset of chronic pancreatitis. Furthermore, after one year of chronic pancreatitis,
the frequency of diabetes was 7.5%. At 10 years and 20 years after diagnosis, it was 28%
and 52%, respectively [70]. A similar trend in the incidence of diabetes associated with
chronic pancreatitis was reported in another study conducted in Japan which included
656 participants. In this study, 10% of chronic pancreatitis patients developed diabetes
at the onset of the study. After ten years of follow-up, the frequency of diabetes had
increased dramatically to 50%; after 25 years, it was 83% [37]. While there is paucity
of data on pancreatogenic diabetes mellitus among HIV-infected individuals, data from
the general population can provide insight on the severity and burden of the disease.
Pancreatogenic diabetes mellitus has been described as a function of inflammation-induced
damage of pancreatic cells [71], caused by infections and toxic substances, such as HIV
and alcohol. The link between diabetes and HIV is well-established. A large retrospective
cohort study of 199,707 PLWH without history of diabetes was conducted in Thailand
between 2007 and 2013. At the end of the study period, 8383 participants had developed
diabetes [72]. In another population-based cohort study conducted in South Carolina
using the Medicaid database, the incidence of diabetes in HIV-infected individuals was
found to be higher than that of non-infected participants in a 1:1 matched case design [73].
Centers for Disease Control and Prevention (CDC) The National Health and Nutrition
Examination Survey (NHANES) data, explored by Hernandez-Romieu et al., revealed
a 3.8% higher prevalence of diabetes mellitus in HIV-infected individuals as compared
with the general population [74]. Of note: excessive alcohol intake, which is also a risk
factor for pancreatogenic diabetes mellitus, occurs more frequently among PLWH [51].
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Although other studies have linked pancreatitis and diabetes among PLWH to chronic
exposure to HAART, this may not be a substantial reason for pancreatogenic diabetes
among alcohol-abusing HIV-infected individuals. This is because the current HAART are
relatively safe and numerous alternatives are available to replace any HAART linked to
abnormal serum pancreatic enzymes.

3. HIV-Induced Pancreatitis
3.1. Clinical Significance

Between 1990 and 2010, pancreatic cancer ranked as the 6th most diagnosed cancer
among HIV-infected individuals in San Francisco [75]. While pancreatic cancer is the
end-stage disease for pancreatic dysfunction, events starting with acute pancreatitis are
significant in describing disease progression. Acute pancreatitis is a well-known complica-
tion of HIV [42] with an increasing prevalence [76]. While 2% accounts for the incidence of
acute pancreatitis in the general population, 40% of PLWH may present with acute pancre-
atitis annually [77]. Numerous studies have linked AIDS to pancreatitis. A retrospective
study reported the incidence of pancreatitis in 22% of AIDS patients [78]. Another study
compared pancreatic damage in AIDS patients to non-AIDS HIV-patients; the incidence of
pancreatic damage was significantly higher among the AIDS patients [79]. Additionally,
as observed in another study, lower cluster of differentiation 4 (CD4) count and higher
viral loads were associated with pancreatitis [42]. Moreover, evidence of pancreatitis from
HIV-infected pediatric patients [80–82] may substantiate HIV as an independent risk factor
for pancreatitis, since the manifestation of other potential risk factors among this study pop-
ulation is minimal. While other infectious agents such as cytomegalovirus, mycoplasma,
hepatotropic viruses, aspergillus, Toxoplasma and coxsackie virus are known etiologies for
pancreatitis, HIV may synergize with the aforementioned pathogens to severely assault the
pancreas [83]. Hence, we do not undermine the role of these pathogens in HIV-induced pan-
creatic damage. Although it may be difficult to understand the role of specific organisms
in the pathogenesis of pancreatitis among PLWH—given that HIV-infected individuals
are usually co-infected with the above-mentioned pathogens—evidence of pancreatitis
from individuals with primary HIV infection may be profound in implicating HIV as an
independent risk factor for pancreatitis [84–89].

3.2. HIV Entry into the Pancreas

HIV entry into pancreatic cells may be the initiation point for HIV-induced pan-
creatotoxicity. Additionally, the role of HAART needs to be recognized, as HAART is
now accessible and available to the majority of PLWH. The availability of HAART has
modified the natural course of HIV; in fact, HIV has evolved from a death verdict to a
manageable and treatable chronic disease. Despite these outstanding benefits of HAART,
numerous side effects have been documented from chronic exposure to HAART. Acute
pancreatitis is one of the side effects linked to HAART. Sulfamethoxazole-trimethoprim,
pentamidine and didanosine were among the earliest drugs associated with pancreatitis
among PLWH [90–93]. In the HAART era, nucleotide reverse transcriptase inhibitors are
strongly implicated [93–95]. However, findings from other studies deviate strongly from
HAART-induced pancreatitis [46,96]. Moreover, Barbosa et al. compared pancreatic dam-
age in deceased AIDS patients during the HAART era to the pre-HAART era, and found
that pancreatic damage was associated with HIV and its complications rather than HAART
use [97]. Furthermore, HAART targets viral replication instead of viral annihilation [98,99],
allowing HIV to assume latency and inhabit potential quiescent cell reservoirs [100,101].
HIV eradication is very intricate even during consistent HAART adherence [100,102].

HIV latency in immune cells, which act as silent reservoirs, is already known. How-
ever, the role of non-immune cells as a reservoir for HIV proviruses has only recently begun
to emerge. This may affect ongoing efforts towards HIV cure. Therefore, for adequacy in
successful HIV eradication, therapeutic strategies exploring latent HIV eradication should
include both immune and non-immune cells. This makes effort to identify the potential
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HIV reservoirs indispensable. While CD4+ T cells are known as prominent HIV reser-
voirs [103], other cells or anatomical sites are becoming notorious for harboring latent
HIV proviruses. Examples include astrocytes [104,105], microglia [106], kidneys [107],
lungs [108–110] and genitalia [111]. While some key organs (e.g., liver) did not previously
qualify as HIV reservoirs, HIV persistence in the liver after years of HAART adherence
has been shown [112–115]. Additionally, while macrophages were commonly known to
harbor HIV in the liver, evidence has emerged that sheds light on the role of hepatocytes
as a gateway for HIV into the liver. Studies by Ganesan et al. recently supported HIV
entry into hepatocytes [116], while Kong et al. showed low level replication of HIV in
hepatocytes [117]. Thus, hepatocytes, while not acting as the real HIV-permissive cells, do
contribute to HIV persistence in the liver.

There is evidence from clinical studies that show an HIV presence in the pancreases of
PLWH. A postmortem analysis of 109 AIDS patients and 38 controls carried out within 6 h
of death revealed HIV proteins (p24) in the pancreatic cells of 24 of the AIDS patients. Other
opportunistic pathogens, such as pneumocystis carinii, Toxoplasma and cytomegalovirus
were also reported. A correlation was found between AIDS and features of pancreatic
acinar damage including decreased zymogen granules, adverse nuclear changes, atrophy,
steatosis, inflammation, hemorrhage, edema and fibrosis [118]. Another study reported
pancreatic abnormalities from histological examination of 113 AIDS patients. Findings
from this study revealed necrotic tissue damage linked to HIV infection [119].

To confirm HIV entry into pancreatic acinar cells, we recently exposed HIV-1ADA
at multiplicity of infections (MOIs) ranging between 0.085 and 0.34 to SW1990 cells, a
pancreatic cancer cell line. HIV gag RNA correlating with the MOIs of HIV was observed
(in our unpublished observations). Although the mechanisms for HIV entry into pancreatic
acinar cells have not been identified, intensive studies have been conducted on HIV entry
into other non-immune cells. Meanwhile, non-immune cells are CD4 negative; therefore,
the mechanisms of HIV entry into non-immune cells are CD4-independent. While human
mannose receptor was identified as the HIV entry for astrocytes [120], both C-C chemokine
receptor type 5 (CCR5) and CXC chemokine receptor type-4 (CXCR4) were implicated
for HIV entry into renal parenchymal calls [121]. Although only CXCR4 was shown to
allow HIV entry into cardiomyocytes [122,123], both CCR5- and CCR4-dependent HIV
entry into hepatocytes has been suggested [117]. While no evidence is available for HIV
entry receptor into pancreatic acinar cells, expressions of CCR5 have been reported on
pancreatic tissues [124,125]. Although CCR5 expressed on pancreatic acinar cells play a
significant role in the progression of pancreatic cancer, CCR5 have also been shown on
cells of nonmalignant pancreatic tissues [126]. Furthermore, pancreatic stellate cells were
shown to express CXCR4 [127].

To further determine if HIV entry into pancreatic cells is mediated by CCR5, we
blocked CCR5 on SW1990 cells with a pharmacological CCR5 inhibitor (maraviroc) and
measured HIV gag RNA using RT-PCR. While HIV gag RNA was detected after exposure
of SW1990 to HIV, maraviroc treatment blocked HIV RNA expression (in unpublished
data). CCR5 is also known as a potential receptor candidate for entry of other viruses, such
as cytomegalovirus, known to target both exocrine and endocrine pancreatic cells [128].
From these, we may assume that CCR5 is the HIV entry receptor for HIV into pancreatic
acinar cells.

3.3. HIV-Induced Damage in Acinar Cells

While we have evidence to suggest that HIV entry into pancreatic acinar cells occurs
and that this may be mediated by CCR5, no mechanisms of HIV-induced pancreatitis
are disclosed. However, we can make inferences from other similar nonimmune cellu-
lar systems to predict HIV-induced pathology in pancreatic acinar cells. One of the key
observations commonly reported in other nonimmune cells in the context of HIV is replica-
tion restriction after HIV entry. For example, astrocytes were shown in an in vitro study
to restrict HIV replication via the T-cell factor 4, which is a downstream effector of the
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Wnt pathway [129]. Brack–Werner also reported nonproductive replication of HIV in
astrocytes [130].

Apparently, astrocytes are not the only cells shown to restrict HIV replication. Car-
diomyocytes, which allow HIV entry, have demonstrated abortive HIV replication [123].
Additionally, hepatocytes were shown recently to demonstrate similar abortive HIV repli-
cation [116]. These nonimmune cells vary and may have different mechanisms mediating
the restriction of HIV replication. The endpoint of HIV-containing cells in all the reviewed
studies was apoptosis. While the observed abortive HIV replication was strongly linked to
apoptosis, the involved mechanisms were not clear. Given that Ganesan et al. showed that
HIV-exposed hepatocytes expressed HIV gag RNA p24, low reverse transcriptase activity
and low total DNA with no integrated DNA [116], it may be presumed that apoptosis was
triggered when the viral genome integrated with the host DNA. However, this has never
been reported. It can be tested by investigating integrated HIV DNA in apoptotic cells. This
is fundamental because if the replication-competent HIV particle is present in apoptotic
cells, it may become a vehicle for effective HIV spread within the organ. Looking at this
from another perspective, our group recently reported abortive replication and apoptosis
of HIV-containing hepatocytes. This seems beneficial because it provides an avenue for
HIV clearance from the organ, but ends up becoming detrimental because HIV-containing
apoptotic cells activated hepatic stellate cells when they were removed [116]. While the
mechanisms of HIV-induced apoptosis are under-investigated, HIV proteins are mostly im-
plicated in cell death. Evidence from both in vitro and in vivo study in brain cells showed
significant cell death after exposure to HIV envelope proteins (gp120 and gp160) even at a
very low concentration of 1ng/mL [131]. Also, our group demonstrated the potential toxic
effects of p24 on hepatocytes [116]. Although we did not directly measure the toxicity of
p24 in hepatocytes, we observed a correlation between p24 and reactive oxygen species
(ROS), which consequently resulted in apoptosis induced by activation of oxidative stress.
These observations were made in hepatocytes; the mechanisms in pancreatic acinar cells
may differ slightly. In fact, while HIV-induced acinar death may be explained by multiple
mechanisms, the most prevalent mechanism revolves around endoplasmic reticulum (ER)
and oxidative stress.

Since acinar cells are effective secretory cells for digestive enzymes, ER activity in
acinar cells becomes paramount for enzyme production and folding [132]. While protein
synthesis in the ER may be crucial, proteins only become functional when properly folded
to their native conformation [133]. This emphasizes the importance of ER protein fold-
ing. Misfolded proteins which are not properly refolded are subjected to ER-associated
protein degradation (ERAD), a pathway targeting the misfolded proteins from ER for
ubiquitination and proteasomal degradation in cytosol. ER stress sensors trigger unfolded
protein response (UPR), resulting in the regulation of molecular chaperones and folding
enzymes to increase ER protein folding capacity. At least three UPR have been identified,
e.g., inositol-requiring protein 1 (IRE1), protein kinase RNA-like ER kinase (PERK) and
activating transcription factor 6 (ATF6) [134]. Although UPR is supposed to restore ER
homeostasis and promote cell survival and adaptation, it is not the case for HIV. ER stress
and UPR are induced by viral infections, including HIV, and prolonged ER stress may lead
to apoptosis or other types of cell death [135]. In astrocytes, HIV induces UPR activation
and finally upregulates such genes as BiP and CHOP [136]. It is not clear whether the
same happens in acinar cells, which can also be unproductively HIV-infected. Another
study on astrocytes revealed that HIV-induced ER stress was mediated by HIV-induced
inflammatory cytokines. In this study, HIV-induced IL-1β was potent enough to activate all
the UPR, leading to ER stress [137]. While this mechanism was observed in HIV-infected
astrocytes, it might also be the case for pancreatic acinar cells, given that acinar cells are
susceptible to HIV-induced inflammation [88]. The comparisons between astrocytes and
pancreatic acinar cells are legitimate, since HIV infection in both these cell types is not
productive. While HIV-induced inflammasome was implicated in the aforementioned
study, another study utilizing astrocytes indicated gp120 (HIV envelope protein) as the
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trigger for ER stress. Based on the latter study, gp120 upregulated ER stress markers such
as phosphorylated JNK, XBP1 splicing and AP-1, which ultimately induced caspase-3-
dependent cell death [138]. HIV-triggered ER stress may be induced by other HIV proteins,
such as HIV Tat. A direct induction of UPR leading to ER stress by HIV Tat has been
reported [139]. A more accurate assumption, predicting the mechanism of HIV-induced
ER stress in pancreatic acinar cells, was observed in the pathogenesis of Coxsackievirus,
which is a pancreatotropic single stranded RNA virus. Colli et al. observed the activation
of one of the UPRs, which simultaneously mediated ER stress and induced the replica-
tion of Coxsackievirus [140]. The exact mechanisms describing these events included the
activation of IRE1, causing the elevation of spliced XBP1—an important marker for ER
stress [141]. Another effect of Coxsackievirus-induced IRE1 is JNK1 activation, required for
Coxsackievirus replication in pancreatic cells. In essence, Coxsackievirus in pancreatic cells
induced ER stress and its replication. While we perceive strongly that HIV—another RNA
virus—will induce similar ER stress, we may not be confident about the ability of HIV to
replicate completely using this same mechanism, given that all investigated nonimmune
cells mentioned in this review had abortive HIV replication [116].

The ultimate outcome of ER stress is cell death through apoptosis or necrosis; how-
ever, the prevailing cell death mechanism has not been clearly elucidated. While the
pro-apoptotic functions of IRE1 have been identified through the TRAF2 and JNK path-
way [142], cellular necrosis was also reported through the TRAF2-JNK pathway in the
context of ER stress [143]. Indeed, many studies have preferentially reported apoptosis
as the predominant ER stress-induced cell death [144–146], but other types of cell death
triggered by ER stress are possible. To elucidate the effect of ER stress on various types
of cell death, the dual functions of UPR on pro-survival [147] and pro-apoptotic proteins
should be compared [148]. While these two functions are contrasting, cells may undergo
apoptosis or not, depending on the degree of ER stress [145]. During mild ER stress, PERK
participates actively to maintain cellular homeostasis for enhancing cell survival; however,
when stress is elevated, the activation of PERK induces activating transcription factor 4
(ATF4), a component of PERK, for the inducement of apoptosis [149]. Similarly, ATF6
activates apoptosis. Although the involved mechanism has not been clearly elucidated,
evidence of ATF6-induced apoptosis by mediating WW Domain Binding Protein 1 has
been reported [150]. Furthermore, ER stress-induced pyroptosis has been also observed.
As is known, pyroptosis is a caspase-1-mediated cell death, characterized mainly by inflam-
mation [151]. It is important to pinpoint pyroptosis as an example of ER stress-induced cell
death in HIV-induced damage of pancreatic acinar cells, given that HIV infection mediates
inflammation in the pancreas. In addition, ER stress-induced caspase-1 overstimulation
and consequent pyroptosis has been shown in hepatocytes [152], as has ER stress-induced
liver injury mediated by IL-1β [153].

HIV-induced oxidative stress can also cause cell death. For example, glutathione deple-
tion was observed in many HIV-infected systems [154–156]. Increased oxidative stress indi-
cators, such as malondialdehyde [157–159], oxidized DNA [160] and 4-hydroxynonenal [161]
were detected in tissues of HIV-infected individuals. Moreover, Brundu et al. observed
glutathione depletion in the pancreas of mice infected with murine leukemic virus (MLV),
which causes AIDS in mice [162]. This was linked to the induction of pancreatitis-like
injury in AIDS-infected mice [163]. HIV proteins are likewise the active trigger of oxidative
stress [164–166]. The mechanisms of HIV-induced oxidative stress are linked to the mito-
chondrion [167], which may mediate cell death [168,169]. While HIV in other nonimmune
cells generates ROS to induce cell death by apoptosis, the mechanism of ROS-induced
cell death in pancreatic acinar cells may include necrosis [154], which is frequently linked
to pancreatitis [42,170]. Even though apoptosis and necrosis may occur simultaneously,
it is possible that apoptosis in some instances may precede necrosis. A study revealed
that infiltration of inflammatory cells triggered secondary necrosis in apoptotic cells [158].
Both necrosis and apoptosis of acinar cells is triggered by mitochondria membrane per-
meabilization, mediated by HIV-induced ROS [171]. In addition, infiltration of T helper
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cells to HIV-containing pancreatic acinar cells may also mediate acinar death. For example:
CCR3+ T helper 1-type CD4+ cells were shown to infiltrate MLV-containing pancreatic
acinar cells due to the expression of CXCL10 [163]. CXCL10 have been shown to induce
apoptosis in pancreatic acinar cells [172]. This suggests that HIV-induced pancreatitis may
be an autoimmune pancreatitis. This is supported by studies on case reports of diagnosed
autoimmune pancreatitis of HIV-infected individuals [88,173].

The pathogenesis of HIV-induced pancreatitis is beyond just acinar necrosis because,
after acinar necrosis, pancreatic stellate cells become activated. The activation of pancreatic
stellate cells after acinar injury or death is a well-known concept; however, the actual type
of cell death that activates pancreatic stellate cells has not been well established. Some
in vivo studies reported the progression of pancreatitis with increased necrosis, while
apoptosis played a protective role [174,175]. The crosstalk initiated by acinar necrotic
cells is intended to activate pancreatic stellate cells for the release of an extracellular
matrix, to maintain tissue architecture altered during pancreatic acinar necrosis. This was
previously demonstrated in the co-culture of acinar and pancreatic stellate cells, where
activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFkB) and
acinar necrosis was observed—with a concomitant increase in the extracellular matrix
protein expression by pancreatic stellate cells [176]. While we are interested in exploring
HIV-induced pancreatic acinar necrosis as the driver of the activation of pancreatic stellate
cells, it is important to elucidate the known signals for pancreatic stellate cells. Evidence
from in vivo studies has revealed that pancreatic stellate cells are activated by the following
signals: platelet derived growth factors (PDGF), transforming growth factor beta (TGFβ),
Tumor necrotic factors (TNFα), reactive oxygen species [177–181], IL-1, IL-6, IL-10 [182]
and angiotensin II [183]. These signals upregulate fibrogenesis by producing substantial
amount of extracellular matrix and collagen, leading to the progression of pancreatic
damage. All these mechanisms are summarized in Figure 1.
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Figure 1. An HIV-exposed pancreas. Visual depiction of the pathogenesis of HIV-induced pancreatitis.
We hypothesize that HIV undergoes some events to mediate its toxicity on pancreatic acinar cells and
these include: (1) HIV entry via C-C chemokine receptor type 5 (CCR5) receptors which are adequately
expressed on acinar cells; (2) HIV proteins triggering ER stress in the ER; (3) HIV proteins triggering
oxidative stress in mitochondria; (4) ER stress triggering apoptosis; (5) oxidative stress triggering
mitochondrial membrane rupture; (6) Ruptured mitochondrial membrane triggered apoptosis or
(7) necrosis; (8) infiltrating immune cells necrotizing HIV-containing acinar cells; (9) infiltrating
immune cells necrotizing HIV-containing apoptotic acinar cells; (10) necrotic acinar cells activating
the pancreatic stellate cells, leading to pancreatic inflammation and fibrosis.
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4. Alcohol Potentiates HIV-Induced Pancreatitis
4.1. Significance

Approximately 14.1 million adult Americans reported AUD in 2019, with 95,000 deaths
linked to alcohol abuse annually. Moreover, excessive use of alcohol deprives the US econ-
omy of approximately $250 billion annually, a cost which includes loss of workplace pro-
ductivity, collision or automobile crashes, elevated criminal activities and healthcare [184].
Furthermore, alcohol has been associated with many morbidities, either as a risk factor
or as a factor potentiating disease progression. For example: alcohol is a recognized risk
factor for HIV infection and transmission [185,186]. Alcohol is also known to interfere
with adherence to HAART required for virologic suppression [187–195]. Consequently,
numerous organs in the body become exposed to the potential toxic effects of unsuppressed
or rebound HIV.

We focused on the impact of alcohol on HIV-exposed pancreatic acinar cells. Just like
other organs, the pancreas is massively exposed to HIV in alcohol-abusing HIV-infected
individuals because of alcohol-induced failed virologic suppression or viremic rebound.
This is just a broad description of the role of alcohol in HIV-exposed pancreatitis; in this
review, we will provide some detail concerning the mechanistic explanation of how al-
cohol potentiates HIV-induced pancreatitis. Years of rigorous research on pancreatitis
have shifted attention from the previously acclaimed sphincteric and pancreatic stone
protein theories to pancreatic secretory cells. Currently, the action of alcohol on secretory
cells is highly implicated for pancreatitis. While epidemiological studies have associated
alcohol to pancreatitis [196–199] and experimental studies have demonstrated how alco-
hol and its metabolites induce pancreatic damage by premature activation of digestive
enzymes [200,201], the role of ethanol for potentiating HIV-induced pancreatic damage is
the focus of this review.

4.2. Pancreatic alcohol metabolism

First, we need to update our understanding on the ethanol-metabolizing tendencies
of pancreatic cells. Both acinar cells and pancreatic stellate cells are known to metabo-
lize ethanol. Previously, Norton I. demonstrated ethanol-induced cytochrome P4502E1
(CYP2E1) in rats’ pancreatic tissues, which have similar CYP2E1 expression patterns as
liver cells exposed to ethanol [202]. While Norton I. demonstrated CYP2E1 only in rats’
tissues, the presence of CYP2E1 in the human pancreas was verified in another study [203].
CYP2E1 is not the only alcohol-metabolizing enzyme observed in the pancreas, as alco-
hol dehydrogenase (ADH), another known alcohol-metabolizing enzyme, has also been
reported [204].

To evaluate the ADH polymorph expressed by pancreatic acinar cells, we exposed
SW1990 cells to 4-methyl pyrazole (4-MP), an ADH1-specific inhibitor. We observed a
significant downregulation of ethanol-induced ADH by 4-MP (unpublished observations).
This suggests that pancreatic acinar cells may be metabolizing ethanol by ADH1. More
recently, genetic studies also linked ADH1B*2 to pancreatitis [205]. Another study using
human tissues observed expression of ADH1 in human pancreatic tissues [206]. Evidence
of ethanol metabolite-induced pancreatotoxicity was shown by measuring malondialde-
hyde in ethanol-fed rats [207]. Malondialdehyde, in the context of ethanol exposure, is an
indicator of acetaldehyde release and the lipid peroxidation process. This confirms the
involvement of ethanol metabolites in pancreatitis. While the pancreas may be linked to ox-
idative alcohol metabolism, evidence of non-oxidative alcohol metabolism in the pancreas
also exists [208]. In fact, substantial amounts of non-oxidative metabolites such as fatty acid
ethyl ester (FAEE) in pancreatic acinar cells have been reported [209]. However, ethanol
oxidative metabolism in the pancreas is higher than non-oxidative metabolism [210].
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4.3. Alcoholic Pancreatitis

Approximately one out of four cases of pancreatitis is due to chronic alcohol consump-
tion [211]. While alcoholic pancreatitis has been intensely described, the mechanisms of
the combined effects of HIV and alcohol remain unexplored. As we attempt to understand
how alcohol potentiates HIV-induced pancreatitis, it is refreshing to briefly comment on
alcoholic pancreatitis. Given that alcohol metabolism in the pancreas occurs oxidatively
and non-oxidatively, alcohol metabolites play a vital role in the pathogenesis of alcoholic
pancreatitis. Meanwhile, sustained elevation of free calcium in acinar cytosol is known to
mediate premature activation of zymogen, which triggers acinar injury [212–214]. The role
of calcium in zymogen premature activation cannot be overemphasized. The pharmaco-
logical blockade of calcium channels was shown to completely prevent acinar cell injury
even in the presence of alcohol [215]. Also, the alcohol non-oxidative metabolite FAEE was
shown to participate in the upregulation of cytosolic calcium [216]. FAEE involvement in
acinar injury is not limited to the disruption of calcium homeostasis; FAEE was also shown
to weaken the membranes of lysosomes and zymogen granules [217,218], which also led to
the premature activation of zymogen. This may occur either by FAEE-induced rupture of
zymogen granule membranes or by activation of zymogen by lysosomal hydrolases leaked
from FAEE-induced ruptured lysosomes [219].

FAEE is not the only ethanol metabolite known for adverse effects on acinar cells. Ac-
etaldehyde, an alcohol oxidative metabolite, may also trigger acinar cell injury by inhibiting
amylase secretion [220]. Moreover, acetaldehyde and ROS induce acinar cell injury when
they undergo lipid peroxidation with lysosome and zymogen granule membranes [221].
In addition to the oxidative stress induced by acetaldehyde, alcohol was observed to
increase unfolded protein response (UPR). Meanwhile, when UPR induction occurs ade-
quately, it protects the cell and maintains cellular homeostasis. However, over-activated or
prolonged UPR signaling experienced during chronic alcohol consumption may trigger
ER stress [222]. Therefore, during chronic alcohol exposure, ER stress may develop in
pancreatic acinar cells. Unlike other alcohol metabolizing cells, such as hepatocytes, which
are injured by the induced ER stress, [223] XBP1 in acinar cells mediates the attenuation of
alcohol-induced ER stress. This may be related to the fact that the ethanol-metabolizing
capacity of liver cells far exceeds that of pancreatic cells and thus, the levels of oxidative
and ER stresses are low in the pancreas when compared with liver cells. These stresses may
not result in alcohol-induced pancreatitis [224,225] and have been considered a physiologic
adaptive response for ethanol-induced pancreatitis. However, a “second hit” such as HIV
may trigger ER stress [226]. Furthermore, alcohol induces the missorting of cathepsin B
in such a way that it colocalizes with zymogen granules, leading to premature activation
of zymogen and acinar cell injury [204,227]. While the premature activation of zymogen
by lysosomal hydrolases has been established, alcohol may increase intracellular produc-
tion of lysosomal hydrolases and zymogen granules, which increases the likelihood for
untimely zymogen activation [228–230]. Moreover, alcohol may mediate acinar injury by
impairing zymogen secretion, leading to accumulation of zymogen [231,232]. Decrease in
the stability of zymogen granules and lysosomes due to alcohol exposure have also been
reported [200,233]. The details of the mechanisms of alcohol pancreatitis are shown in
Figure 2.
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Figure 2. Alcoholic pancreatitis: Visual depiction of the mechanisms of alcohol-induced pancreatitis: We observed that the
mechanisms of alcohol-induced pancreatitis include:(1) Exposure of cell to alcohol molecules; (2) oxidative metabolism of
alcohol in the presence of alcohol dehydrogenase (ADH) to yield reactive toxic metabolite, acetaldehyde; (3) detoxification
of acetaldehyde in the mitochondrion by aldehyde dehydrogenase (ALDH); (4) Oxidative stress-triggered mitochondrion
membrane rupture; (5) Mitochondrion membrane rupture leading to necrosis; (6) Alcohol undergoing nonoxidative
metabolism to form fatty acid ethyl esters (FAEE); (7) FAEE weakening zymogen granule membranes; (8) unmetabolized
alcohol directly weakening zymogen granule membranes; (9) mitochondrion releasing ROS; (10) ethanol metabolism
by CYP2E1 releasing ROS; (11) ROS rupturing lysosome membrane; (12) released lysosome hydrolases from ruptured
lysosome weakening the zymogen granule membranes; (13) Zymogen granule membrane rupture and activation; (14)
Ethanol upregulating UPR with no ER stress observed; (15) Ruptured lysosomes inducing necrosis; (16) Ruptured zymogen
granules inducing necrosis.

4.4. Proposed Mechanisms for the Role of Alcohol in HIV-Induced Pancreatitis

Given that HIV entry and ethanol metabolism are events that potentially occur in
pancreatic cells, the next valid question is: how does ethanol (or its metabolites) affect
HIV-induced pathogenesis in pancreatic cells? The impetus to study the combined effects
of alcohol and HIV on pancreatic acinar cells was drawn from the following: first, the
elevated prevalence of alcohol use disorder among HIV-infected individuals [234]; second,
the elevated risk of pancreatitis among alcohol abusing individuals [235]; third, the fact that
pancreatitis is a common occurrence among PLWH [173]. It suffices to say that, while alco-
hol consumption by HIV patients increases the risk of pancreatitis, HIV infection of acinar
cells may be required for the manifestation of the disease. Although there is paucity of lit-
erature on studies highlighting the role of alcohol in potentiating HIV-induced pancreatitis,
we relied on descriptions from other similar cellular systems to explain these mechanisms.
We started by proposing alcohol-induced CCR5 modification as a possible mechanism
for potentiating HIV-induced pancreatitis. It was previously shown in an in vitro study
that the entry of HIV into human blood monocyte-derived macrophages was enhanced by
ethanol treatment administered in a dose-dependent manner [236]. Additionally, increased
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CCR5 expression was shown in the liver of ethanol-fed mice [237]. Another study demon-
strated the alcohol-induced elevation of CCR5 on peripheral blood lymphocytes [238]. As
alcohol-induced CCR5 upregulations were observed in other cells, we were tempted to
assume similar alcoholic upregulation of CCR5 for pancreatic acinar cells.

While HIV binds to the membrane of target cells by CCR5, viral internalization is
achieved by endocytosis [239–241]. In fact, this may partly explain the nonproductive HIV
replication commonly observed in nonimmune cells, given that internalized HIV is fated
for degradation by pH-dependent lysosome [242]. However, when the lysosome becomes
impaired by elevated pH, HIV accumulates in the cells. Fredericksen et al. previously
observed HIV accumulation in Human 293T cells and HeLa Magi cells after increasing
lysosomal pH with bafilomycin [243]. Also, alcohol was shown to be able to increase lyso-
some pH just like bafilomycin. This was demonstrated when Kharbanda et al. exposed rats
to ethanol. A 0.2 unit increase of lysosomal pH, which was significant enough to suppress
protein degradation, was observed. This effect was higher and prolonged in rats with
chronic ethanol exposure [244]. Similarly, alcohol-induced lysosome dysfunction has been
demonstrated in liver tissues [245–249]. In view of this, we recently demonstrated HIV
accumulation in hepatocytes with alcohol-impaired lysosomes [116]. No studies, to our
knowledge, have observed alcohol-induced HIV accumulation in pancreatic acinar cells,
and we were reluctant to make inferences from other cell systems. However, we became
insistent when we observed similarities between the patterns of alcohol-induced lysosome
damage in other nonimmune and acinar cells (described in Section 4.3). A detailed descrip-
tion of the proposed mechanism by which alcohol potentiates HIV-induced pancreatitis is
fully described in Figure 3.

The ultimate outcome of pancreatic acinar cells exposed to both HIV and alcohol is
cell death, mediated by alcohol-induced HIV accumulation. While apoptosis is commonly
linked to HIV-induced cell death, this may not be completely accurate for the pancreas.
In HIV-infected CD4+Lymphocytes, only 5% were shown to account for apoptosis; the
remaining 95%, which did not support productive HIV replication, died by pyroptosis [250].
Moreover, in HIV-infected monocytoid and T-lymphoblastoid cells, only 12% of HIV-
induced cell death was due to apoptosis. Necrosis accounted for the remaining 88%,
accompanied by some intracellular changes such as ER and mitochondrial dilation [251].
While the above mentioned mechanisms were illustrative for HIV-induced cell death in
immune cells, apoptosis was predominantly observed in HIV-expressing nonimmune cells
such as hepatocytes [116] and cardiomyocytes [123]. However, these studies may have
potentially missed HIV-induced necrosis, given that necrosis was never measured as a
mechanism of HIV-induced cell death. While HIV by itself may have provided some
toxicity, as described in Section 3.3, our intent here was to describe how alcohol-induced
HIV accumulation in pancreatic acinar cells may trigger a more prominent toxicity in the
cells. Therefore, in future studies, we will lean towards necrosis as the predominant cell
death mechanism in acinar cells exposed to both HIV and alcohol—since pancreatitis is
primarily mediated by necrosis [252].
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Figure 3. Proposed mechanisms of HIV-induced pancreatitis potentiated by alcohol: Visual illustration of the proposed
mechanisms explaining how alcohol and its metabolites potentiates HIV-induced pancreatic damage. The mechanistic
steps include: (1) at the surface of the acinar cell membrane, ethanol or its metabolites upregulating CCR5, leading to
massive HIV entry into acinar cells; (2) HIV becomes internalized by the endosome and is fated for degradation by the
pH-dependent lysosome; (3) alcohol becomes metabolized oxidatively and non-oxidatively to yield ROS and fatty acid
ethyl esters (FAEE), respectively; (4) the lysosome becomes impaired due to alcohol-induced pH elevation or disruption of
lysosome membrane by ROS and FAEE; (5) persistent lysosome damage due to alcohol-induced inhibition of lysosome
biogenesis. The overall effects of these mechanisms lead to the accumulation and persistence of HIV, which should have
been degraded by lysosomes; hence, the accumulated HIV induces the damage highlighted in Figure 1.

5. Potential Therapeutic Strategies for Alcohol and HIV-Induced Tissue Damage:
A Reflection for HIV-Induced Pancreatitis Potentiated by Alcohol

While the current HAART is efficient at restricting viral replication, it may not be ade-
quate for resolving organ damage in nonimmune systems. This is because the mechanism
of HIV and alcohol-induced toxicity in nonimmune cells is independent of viral replication.
As a result, an effective therapeutic regimen required to ameliorate the adverse effects of
HIV and alcohol is required to augment HAART. So far, from evidence garnered in this
review, we know that HIV entry into many nonimmune cells is CCR5-dependent, which
is triggered by ethanol metabolites, leading to intracellular HIV accumulation. The two
major mechanisms identified to explain HIV accumulation in ethanol-treated nonimmune
cells are CCR5 upregulation and lysosome suppression. HIV proteins from accumulated
HIV perpetrate adverse effects, such as oxidative and ER stress, which leads to cell death
that in turn leads to fibrosis in nonimmune organs containing fibroblasts.

Based on this understanding, therapeutic regimens should target suppression of
HIV entry, resuscitation of lysosome functions, suppression of cell death, and finally,
suppression of pancreatic stellate cell activation. As we explore available therapeutic
regimens for the above listed therapeutic targets, it is important to deliberate on why
inhibiting only cell death may not be efficient as a therapeutic strategy, even though cell
death is the axis for HIV and ethanol-induced organ failure. This is because inhibition
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of cell death may increase HIV persistence in tissues, which may further be a source of
rebound viremia when HAART use is interrupted [253,254]. Moreover, we observed in
our laboratory that inhibition of apoptosis of HIV-infected hepatocytes with pan-caspase
inhibitors significantly upregulated HIV gag RNA and p24 [116]. Therefore, an effective
therapeutic regimen for HIV and alcohol- induced organ damage must be comprehensive.

Different types of HIV entry inhibitors exist. Given that nonimmune cells are CD4-
negative, our focus will be inhibitors for HIV coreceptors and HIV envelope proteins.
Very recently (July 2020), Fostemsavir was United States Food and Drug Administration
(FDA)-approved for use by HIV patients. The active moiety of Fostemsavir is Temsavir,
which interacts with gp120 and inhibits it from binding to CCR5 on target cells [255].
Hence, Temsavir may be efficient for inhibiting HIV entry into CCR5-expressing cells
such as pancreatic acinar cells. Maraviroc is another HIV entry inhibitor approved by
the FDA. It prevents HIV entry by acting as a CCR5 antagonist [256]. Leronlimab is
another HIV entry inhibitor which targets CCR5 as well. While the FDA recently granted a
fast-track designation for Leronlimab to augment HAART, it is still predominantly in the
investigative stage in other countries. Although the potentials of Leronlimab have been
demonstrated in other critical conditions, such as breast cancer, here, we are focused on
HIV. Leronlimab blocks CCR5 and prevents the interaction of HIV surface proteins with
CCR5 [257]. While the potency and efficacy of HIV entry inhibitors have been established
by different clinical trials, no studies highlighted their specific effects on HIV and alcohol-
induced organ failure. Although they may potently ameliorate HIV toxicity, it is feared
that there may be other mechanisms beyond coreceptors for HIV entry into these organs.
Moreover, other nonclassical HIV entry mechanisms for numerous nonimmune cells are
still being studied. Targeting HIV entry as a therapeutic regimen will only be successful if
all potential HIV entry mechanisms are adequately considered [240].

Resuscitation of impaired lysosome function is another opportunity for therapeutic
intervention in HIV and alcohol-induced organ damage. While we seek to identify potent
regimens to restore lysosome damage, we must first agree on the mechanisms that impair
lysosomes in the presence of alcohol and HIV. Given that lysosome leakage triggered
by oxidative stress is implicated as the mechanism for alcohol-induced lysosome dam-
age [258], treatment with antioxidants may restore lysosome function. Recently, in our
laboratory, we pretreated hepatocytes with N-acetyl cysteine (NAC), a known antioxidant,
and observed a significant restoration of cathepsin B and L activities, which drastically
suppress HIV gag RNA even after exposure to ethanol metabolites and HIV (unpublished
observations). This indicates that NAC prevented lysosome membrane permeabilization
by scavenging ROS released by ethanol metabolites and improved HIV degradation. Other
studies have confirmed our findings [259,260]. While lysosome leakage is one way to
explain alcohol-induced lysosome dysfunction, the modification of lysosome biogene-
sis is another [261,262], and it will be of immense value for resuscitation of impaired
lysosome function.

Another suitable target for therapeutic purposes is stellate cells or fibroblasts of
non-immune organs. Antifibrotic and anti-inflammatory agents may be efficient for amelio-
rating HIV- and ethanol-induced toxicity. As we have shown, an example of such an agent
is obeticholic acid. Obeticholic acid is an FDA-approved drug for primary biliary cholangi-
tis treatment. As an antifibrotic and anti-inflammatory agent, it binds to the farnesoid-X
receptor (FXR) to mediate its effects. We demonstrated its ability to restore lysosome
function, decrease HIV accumulation and decrease apoptosis in hepatocytes [263]. In fact,
many nonimmune cells express FXR, including pancreatic cells, and thus obeticholic acid
may be a suitable therapeutic regimen for HIV and alcohol-induced organ failure [264,265].

To further address fibrosis in nonimmune organs, phytochemicals with anti-inflammatory
and antifibrotic properties have been explored in clinical trials. For example, the antifibrotic
and anti-inflammatory properties of curcumin have been observed [266,267]. Furthermore,
the antifibrotic and anti-inflammatory effects of epigallocatechin gallate have also been
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observed. In fact, epigallocatechin gallate attenuates ethanol-mediated activation of pan-
creatic stellate cells [268].

Given that there are currently no established guidelines for treating pancreatitis in
alcohol-abusing HIV-infected patients, the administration of potential therapy addressing
the toxic effects of HIV and alcohol seems to be the most valuable therapeutic approach.

6. Conclusions

In this review, we explored the mechanisms of HIV- and alcohol-induced pancreatic
damage. We found that HIV entry into pancreatic acinar cells may occur via CCR5, which
is key in the pathogenesis of pancreatitis in HIV-infected individuals. Moreover, we
found that HIV-induced toxicity in pancreatic acinar cells is mediated by oxidative and
ER stress, which induces necrosis by rupturing the mitochondrial membrane. Hence,
pancreatic stellate cells become activated by interacting with necrotic products, leading
to the progression of pancreatic injury. On the other hand, alcohol-induced pancreatitis
is mediated directly by both oxidative and nonoxidative alcohol metabolites. Alcohol-
induced oxidative stress and nonoxidative metabolites are implicated in oxidative stress
and rupture of zymogen granule membrane respectively. The crosstalk between leaked
lysosomes and zymogen granules has been shown to induce premature activation of
zymogen by lysosome hydrolases, leading to acinar injury.

While HIV and alcohol both contribute to the development of pancreatitis, the com-
bined effects of both have not previously been reported. To explain the possible mechanisms
for alcohol- and HIV-induced pancreatitis, we proposed that alcohol enhances HIV entry
into acinar cells by upregulating CCR5 expression. Furthermore, alcohol metabolites block
the degradation of internalized HIV proteins to trigger ER and oxidative stress for the
promotion of pancreatic acinar injury and necrosis. Interactions between the necrotic prod-
ucts of pancreatic acinar cells activate the pancreatic stellate cells, resulting in release of
inflammasomes and profibrogenic cytokines, which mediate pancreatitis. Considering HIV
entry and activation of stellate cells to be the main events that lead to HIV-induced organ
damage, effective therapeutic regimens for pancreatitis should block CCR5 and suppress
the activation of fibroblasts after exposure to cell death products.
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