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ABSTRACT 
 

Transmission lines are integral to transporting electrical power from generation sites to consumers. 
Transmission lines are subject to various faults that disrupt service and threaten system integrity. 
Fault analysis (identification, classification, and localization) is essential to minimize downtime and 
operational costs. Improved fault control raises grid dependability, decreases outages, and 
optimizes operations, promoting renewable integration and cost savings. It enhances safety, power 
quality, and resilience while facilitating innovative grid modernization and scalability for future 
demands. Such developments strengthen consumer trust and lead to more sustainable, efficient, 
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and resilient power systems. This research employs Artificial Neural Networks (ANN) to enhance 
fault detection on high-voltage transmission lines. Simulations were conducted on a 132 kV, 50 Hz, 
100 km transmission line model using MATLAB/Simulink, generating data from various fault 
scenarios. The ANNs, trained with these datasets, effectively and accurately analyzed the faults. 
The most effective neural network architecture was identified, assuring dependable operation in 
various fault scenarios and showcasing a strong strategy to enhance power transmission efficiency. 
Configuration 2 achieved the best fault identification accuracy of 97.99%, demonstrating the 
system's low error rate in accurately detecting the flaw. Fault classification with Configuration 1 
attained a 95.65% accuracy rate. This indicates that the system can effectively categorize various 
fault types. The fault location was at an accuracy of 94.51% using Configuration 1. 
 

 
Keywords: Fault identification; transmission line; artificial neural network; system reliability; fault 

localization. 
 

1. INTRODUCTION  
 
The ability of electrical power networks to supply 
electricity to industrial, commercial, and 
residential customers makes them essential to 
modern life. Relative turmoil, financial losses, 
and even fatalities may result from a brief power 
outage (Hines et al., 2009; GeneratorSource, 
n.d.). Power outages also impact a wide range of 
departments and organizations, some of which 
are deemed critical: those that depend on a 
steady supply of energy, such as the fire, police, 
and military departments, as well as hospitals, 
clinics, and health care facilities (Hachem-
Vermette & Yadav, 2023). To keep the power 
system operating regularly after a transmission 
line breakdown, it is critical to promptly and 
accurately identify the fault source and address it 
(Liu, 2021; Saha & Izykowski, 2010). Ensuring 
faults are accurately detected and localized 
improves power transmission networks' 
dependability (Khan, 2024). 
 
Apart from the significant financial implications, 
namely the time and money that can be saved 
during the fault detection process, pinpointing 
the precise location of the fault and quickly 
isolating the affected power section also improve 
the line's security against theft. 
 
An electric power system made up of numerous 
intricately interacting components is always 
susceptible to disruptions or faults (Ranjithkumar 
et al., 2022). The world power system has grown 
significantly over the past few decades, 
necessitating the construction of many additional 
transmission and distribution lines. Because of 
this, the electrical power system must be brought 
back online as quickly as possible using 
maneuvers and corrective measures without 
compromising the reliability, quality, or continuity 
of the electric power supply (Adibi & Fink, 1994). 

A power system fault is one of the most critical 
things preventing a steady power supply and 
electricity. A voltage and current divergence from 
their nominal values or states is referred to as an 
electrical fault (Almobasher & Habiballah, 2020). 
Regular operating conditions allow power 
system equipment or lines to carry regular 
voltages and currents, which makes system 
operation safer. Transmission line fault 
protection is the main focus of the majority of 
research conducted on the subject of protective 
relaying of power systems. Physically inspecting 
transmission lines for flaws might take several 
hours or a few minutes due to their length and 
ability to traverse different types of terrain (Babu 
et al., 2011). To locate these faults quickly, 
numerous utilities include fault-locating devices 
in their power quality monitoring systems 
(Paithankar & Bhide, 2012) outfitted with Global 
Information Systems. There are different 
categories for fault location techniques based on 
how many terminals are considered when 
gathering data. 
 
However, the properties of subterranean cables 
and overhead lines (capacitance, inductance, 
resistance, etc.) differ significantly. On a hybrid 
transmission line, conventional protection 
devices (such as distance relays) are unable to 
recognize defects and pinpoint their positions 
with accuracy (Dasgupta et al., 2012). With a 
focus on neural networks, fuzzy logic, and 
evolutionary algorithms, an overview of popular 
techniques based on the artificial intelligence 
approach is given (Krarti, 2003). Artificial neural 
networks (ANN) are one of the available 
techniques widely employed in this research to 
find defects in electric power transmission lines. 
Unlike other artificial intelligence-based 
approaches, these ANN-based approaches do 
not require a knowledge base for fault location 
(Kasztenny et al., 2004).  
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In (Koley et al., 2015), a hybrid approach based 
on DWT and ANN is presented for a six-phase 
line fault locator, classifier, and detector using 
just single-end measured data. The DWT-
acquired estimated voltage and current signal 
standard deviation coefficients are sent into the 
ANN to facilitate fault localization and 
classification. 
 

The application of wavelet analysis with ANN for 
accurate classification was investigated in (Saini 
et al., 2016). The method uses the fault 
classifier's approximation coefficient energy. 
Faults are accurately classified by applying DWT 
to obtain approximation coefficients for fault 
current signals. The Matlab/Simulink 
environment was utilized, and the suggested 
system was examined. 
 

For fault detection and defective phase 
recognition, the author in (Kapoor et al., 2020) 
applies the Fast Walsh-Hadamard transform 
(FWHT) to a three-phase transmission line 
(TPTL). The FWHT has been thoroughly studied 
using TPTL's MATLAB test model. The 
transducers connected to the TPTL's bus 1 
provide the three-phase fault current readings to 
the FWH algorithm. The procedure for detecting 
faults is quite precise.  
 

ANN and DWT are integrated in (Saleh & Salam, 
2012) for fault location and classification. After 
features are extracted using the DWT, fault 
signals are sent into the ANN. The integrated 
method enhances the precision and 
dependability of transmission line problem 
diagnostics. It shows how machine learning and 
advanced signal-processing techniques work 
well together. The methodologies vary from 
model-based techniques to machine learning to 
hybrid methods, focusing on defect detection, 
localization, and classification in power 
transmission lines. While these works have 
underlined achievements, further work is still 
required for accuracy, scalability, and interaction 
with emerging technologies toward a more 
robust fault analysis. 
 

(Jamil et al., 2015) This study uses feed-forward 
neural networks and back-propagation to identify 
and classify transmission line faults based on 
three-phase currents and voltages. The method 
displays efficiency and adaptability through 
extensive simulations with different parameters 
and hidden layers, with the potential to be used 
in power distribution networks. 
 

(He et al., 2014) This provides a fault 
classification approach for extra high voltage 

transmission lines based on a Rough 
Membership Neural Network (RMNN) classifier. 
The wavelet process reflects time-frequency and 
time-domain characteristics, whereas RMNN 
classifiers and the Back Propagation (BP) 
algorithm improve performance. Simulations 
show that the suggested method outperforms 
common BPNN in terms of digital protection 
speed, accuracy, and robustness. In this 
research, the fault location was not considered. 
 
Many authors who have worked on related 
research on fault analysis on transmission lines 
have used various inputs to train the ANN. 
However, there has been inadequate emphasis 
on comparing these input sets to determine 
which configurations yield the highest accuracy 
and most efficient neural network performance. 
This study addresses this gap by comparing 
different input sets to select the optimal 
combination for accurate fault analysis and 
performance. 
 

2. MATERIALS AND METHODS 
 
Artificial neural networks are the basis of the 
methodology used to accomplish the goals of 
this work. These networks use the parameters 
and data collected from the Transmission 
Company of Nigeria (TCN) to model a 
transmission line using MATLAB/SIMULINK. The 
extracted features from SIMULINK fault current 
and voltage signals are inputs to artificial neural 
networks. The core approach entails comparing 
input sets for training ANNs to determine which 
provides the best accuracy to optimize neural 
network performance. 
 
The Sim-Power-Systems toolbox in 
MATLAB/Simulink software version 2018a was 
used to model a three-phase, single circuit, 
132kV, 50 HZ, and 100km transmission line 
power system. It comprises 3-phase voltage and 
current measurements, transmission line pi-
network, and 3-phase load. Various 
combinations of variables like current and 
voltage signals, RMS values, and sequence 
components are used at the fundamental 
frequency. The ANNs use a back-propagation 
algorithm trained on simulated fault scenarios to 
differentiate between non-faulty and faulty 
cases, classify fault types, and accurately 
localize faults along power transmission lines. 
 
Simulations were performed using 
MATLAB/Simulink on a sample three-phase 
power system. The three-phase fault in the 
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Simulink environment introduced faults for all 
types of faults at ten different locations, with five 
different values of fault resistance at a sampling 
rate of 6.4 kHz. 
 

The three phases' RMS voltages, currents, and 
sequence components are measured. The RMS 
voltages and currents consist of the RMS line-to-
line voltages/currents (Vab, Vbc, Vca, Iab, Ibc, 
Ica,) and the RMS phase voltages/currents (Ia, 
Ib, Ic, Va, Vb, Vc,). The sequence components 
are the zero sequence currents (Io), positive 
sequence currents (Ip), and negative sequence 
currents (In). Twelve quantities were used to 
select the best input combinations for the neural 
network. The values are Ia, Ib, Ic, Va, Vb, Vc, 
Vab, Vbc, Vca, and In/Ip, Io/Ip, and Ip/Iload. The 
negative and positive sequences currents (In/Ip) 
ratio distinguishes balanced and unbalanced 
faults. The ratio of zero sequence current to 
positive sequence currents (Io/Ip) distinguishes 
ground faults from phase faults. The ratio of 
positive sequence current to load currents 
(Ip/Iload) distinguishes balanced faults from no-
fault conditions. 
 

Three combinations of the six inputs were made 
based on the twelve measured quantities, and 
the best combination was selected based on the 
trained ANN. Three sets of feature combinations, 
namely Configuration-1, Configuration-2, and 
Configuration-3, are utilized for training the ANN. 
 

For Configuration -1, inputs were Va, Vb, Vc, 
and Ia, Ib, and Ic. Configuration -2 are Vab, Vbc, 
Vca, and In/Ip, Io/Ip, and Ip/Iload while in 
Configuration -3 are Va, Vb, and Vc and In/Ip, 
Io/Ip, and Ip/Iload. 
 

To achieve the objective, different input sets for 
training ANNs were compared to determine 
which provides the best accuracy to optimize 
neural network performance. 
 

3. RESULTS AND DISCUSSION 
 

This section gives the findings from the ANN 
fault prediction for this research. This research 
utilizes a single ANN technique within the same 
ANN structure to predict fault analysis. By 
leveraging the neural network's capabilities, the 
model effectively combines these three critical 
aspects of fault analysis, offering a 
comprehensive solution for identifying, 
classifying, and locating faults in electrical 
systems. 
 

The model was optimized by varying the number 
of neurons in the single hidden layer. Starting 

with ten neurons, the count was incrementally 
increased to 15, 20 to 25, and finally to 30 
neurons. Each neuron employed the hyperbolic 
tangent sigmoid transfer function. 
 
The training uses the Levenberg-Marquardt 
algorithm, with the mean square error (MSE) as 
the performance metric, utilizing MATLAB's 
"trainlm" function. Three models of single ANN 
structures were developed, each incorporating 
variations in input data for training and differing 
numbers of neurons in the hidden layers. These 
models were trained and evaluated to determine 
how effectively different ANN architectures, with 
varying input data ranges, could predict fault 
identification, classification, and location. 
 
The evaluation began after training all the ANN 
architectures and compiling the complete testing 
data set. Subsequently, this testing data was fed 
into the trained ANN structures, allowing each 
ANN to generate fault predictions. The results 
from the ANN outputs were then compared to 
the actual testing target fault data. 
 
For each case, the ANN output predictions were 
scrutinized against the actual fault data, focusing 
on fault analysis. The accuracy of fault 
identification and location predictions was 
assessed by calculating the error difference 
based on the absolute error between the actual 
and predicted values. The absolute error was 
calculated for all ANN output predictions for each 
ANN structure created using the various 
available measurement configurations.  The 
mean absolute error (MAE) was used to assess 
the model's performance for fault classifications. 
A lower MAE corresponds to a more accurate 
classification model. 
 
Absolute Error = Actual Value − Predicted Value   
 

Mean Absolute Error =
1

N
∑ (𝑦𝑖 − 𝑦𝑖𝑖)

𝑛

𝑖=1
 (R-

bloggers, 2021)                                                (1) 
 
N = Number of observations 
yi =    for the observation. 
yii =    for the observation. 
 
The performance of each ANN model was 
thoroughly evaluated, providing insights into the 
effectiveness of different ANN structures in 
accurately predicting fault scenarios. This 
thorough process reassured the validity of the 
evaluation, highlighting the strengths and 
potential areas for improvement in the                    
ANN. 
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Fig. 1. Training Performance (MSE) for Fault Identification 
 

 
 

Fig. 2. Validation Performance (MSE) for fault identification 
 

3.1 Training and Validation of Fault 
Identification for the Three 
Configurations 

 

As shown in Fig. 1, Configuration 1 starts with 
0.116364, portentously higher than the others, 
showing that the overall performance might be 
affected by this higher error. The preceding 
values exhibit a significant decrease, suggesting 
that the arrangement stabilizes at lower error 
rates with increased neurons. Configuration 2 
continuously displays extremely low error levels, 
which suggests better training performance. 
Configuration 2 is the best overall training 
performance because it is steady and shows 
little fluctuations. Similar to configuration 2, 
configuration 3 begins with shallow error values 

(3.76e-06 and 0.001476), but as performance 
values (0.043523 and 0.024018) improve, they 
do so significantly. 
 
The validation performance gives insights into 
how each configuration generalizes to unseen 
data after training.  As shown in Fig. 2, 
Configuration 1 has validation performance 
values of 0.125292, 0.001632, 0.002131, 
0.008576, and 0.001836.  The first value 
(0.125292) is relatively high compared to the 
others, indicating that the model may experience 
some difficulty in generalizing for certain 
validation sets. Configuration 2 displays low 
validation errors, with values close to zero in 
many instances. Configuration 3 starts with low 
error values (4.96e-06, 0.001512), but the error 
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increases significantly later (0.043454 and 
0.021629). Configuration 3 shows some 
instability in certain validation sets, affecting its 
overall performance. 
 
Configuration 2 points toward the best choice. It 
maintains the lowest error consistently during 
testing, validation, and training. Because the 
errors do not change significantly as the number 
of neurons increases, they can be generalized 
effectively and are less likely to over-fit. Because 
of its consistent overall performance, it is a good 
option for jobs involving identifying and locating 
faults in power transmission networks. 

3.2 Training and Validation of Fault 
Classification for the Three 
Configurations 

 
The values at ten and fifteen neurons, 0.004618 
and 0.004102, respectively, are extremely low, 
as seen in Fig. 3, suggesting excellent              
learning with few errors employing Configuration 
1. Yet, the value of 0.061546) is             
significantly higher at twenty neurons,           
indicating that the model had difficulty learning 
some parts of the fault classification during 
training. 

 

 
 

Fig. 3. Training Performance (MSE) for Fault Classification 
 

 
 

Fig. 4. Validation Performance (MSE) for Fault Classification 
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At ten and fifteen neurons, Configuration 2 has 
values (0.041335 and 0.068925) higher than 
those of Configuration 1. Additionally, 
Configuration 2 has more significant training 
errors, suggesting it might not be as effective as 
Configuration 1 during the training phase. 
 
Configuration 3 has varied results, with some 
cases having errors as low as 0.013583 and 
others posing serious training challenges. 
 
As shown in Fig. 4, Configuration 1 validation 
errors remain consistent, ranging between 
0.0042 and 0.0623. Configuration 2 validation 

errors are likewise high, indicating possible over-
fitting, with a maximum error of 0.0606. The 
higher validation errors, approaching 0.0751, 
indicate over-fitting with Configuration 3. 
 
Configuration 1 is the best choice due to its 
lower and more constant error rates during the 
training, validation, and testing phases for 
classification, despite a few significant errors. It 
provides a broader perspective that may be 
more applicable to fresh, previously unknown 
data. However, additional tuning may be 
required to solve specific high-error occurrences 
while improving overall efficiency. 

 

 
 

Fig. 5. Training Performance (MSE) for Fault Location 
 

 
 

Fig. 6. Validation Performance (MSE) for Fault Location 
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3.3 Training, Validation and Test of Fault 
Location for the Three 
Configurations 

 

Fig. 5 shows that Configuration 1 has the lowest 
and most consistent error rates across all 
phases. The errors are stable without noticeable 
spikes, showing strong generalization and 
robustness. Configuration 2 exhibits instability 
with large error spikes. Configuration 3 has 
higher and more variable errors. 
 

Configuration 1 exhibits the best performance, 
with consistently low errors and steady 
behaviour across many instances, as seen in 
Fig. 6. Although Configuration 2 is generally 
good, the substantial inaccuracy of 0.16675 
raises stability concerns. Of the three 
configurations, configuration 3 has the most 
significant errors and the lowest accuracy, 
indicating that it might not be the best choice for 
accurate fault location. 
 

This indicates that Configuration 1 has the best 
possible option for fault location. It is more 
dependable, has better generalization, and 
shows less error variation throughout all stages. 
 

3.4 Evaluation of Independent Data 
Performance for Fault Identification 

 

Fig. 7 shows absolute errors in Configuration 1: 
0.1099, 0.0258, 0.0225, 0.0319, and 0.0321. 
This combination's performance is average. The 
most significant error (0.1099) implies that there 
may be some occasions when the identification 
is not as accurate, but the rest are pretty 
modest, suggesting some consistency. However, 

the difference between the greatest and lowest 
mistakes points to instability. Errors begin at 
0.1099 (10 neurons) and decline progressively to 
0.0225 (20 neurons), indicating better 
performance with more neurons. In contrast, 
errors increase slightly at 25 neurons (0.0319) 
and remain comparable at 30 neurons (0.0321). 
The absolute errors decrease as the number of 
neurons increases. 
 
Configuration 2: 0.0194, 0.0346, 0.0088, 0.0200, 
and 0.0171 are the absolute errors. This 
configuration has the fewest overall errors, with 
most values falling between 0.01 and 0.03. The 
model's excellent ability to detect errors precisely 
is demonstrated by the lowest error of 0.0088. 
The small range of mistakes indicates better 
stability and generalization. It exhibits negligible 
errors in all neurons, with the lowest errors 
occurring in neurons 0.0195 (10 neurons) and 
0.0088 (20 neurons) and the highest errors 
occurring at neurons 25 (0.0200) and 30 
(0.0171). It maintains low errors throughout. 
 
Configuration 3: Absolute Errors: 0.0823, 
0.0608, 0.0345, 0.1155, 0.0392 Higher errors 
and more significant variation. The greatest error 
(0.1155) is the most important, which could 
indicate over-fitting or a struggle with 
classification accuracy for certain fault cases. 
The performance is more erratic, with the errors 
fluctuating significantly across different cases. 
The error values in this configuration are higher, 
rising at 0.1155 (25 neurons) and beginning at 
0.0823 (10 neurons). As the number of neurons 
increases, noticeable variations point to 
instability. 

 

 
 

Fig. 7. Independent Performance (MSE) for Fault Identification 
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Fig. 8. Independent Performance (MSE) for Fault Classification 
 

 
 

Fig. 9. Independent Performance (MSE) for Fault Location 
 
For fault identification, Configuration 2, with 20 
neurons, has the best independent test 
performance; it maintains the lowest errors 
overall and demonstrates better consistency and 
stability compared to Configurations 1 and 3. 
Configuration 1 shows moderate performance 
but with some instability, while Configuration 3 
has higher and more varied errors, making it the 
least reliable. 
 

3.5 Evaluation of Independent Data 
Performance for Fault Classification 

 
Fig. 8 shows the MAE errors for Configuration 1 
are 0.0214, 0.0285, 0.0839, 0.0453, and 0.0385. 
This setup displays a combination of moderate 

and low mistakes. While the highest error 
(0.0839) indicates uneven performance or 
difficulties with particular fault types, the lowest 
error (0.0214) occasionally shows respectable 
performance. Overall, it shows adequate good 
performance with minor fluctuations. While 
errors increase with the number of neurons, they 
generally stay constant. Beginning at 0.0214 (10 
neurons), the errors gradually increase until 
reaching a peak at 0.0839 (20 neurons). For 
increasing neuron counts, the errors stabilize 
between 0.0385 and 0.0453. 
 
Configuration2 Mean Absolute errors include 
0.0799, 0.0922, 0.0313, 0.0510, and 0.0300. It 
has substantially more mistakes than 
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Configuration 1, with the highest reaching 
0.0922. This suggests poorer classification 
performance. Although a few errors (0.0300 and 
0.0313) are moderate, the overall results 
indicate that this configuration fails to sustain low 
error levels across several circumstances. It 
begins with higher errors at 0.0799 (10 neurons) 
and 0.0922 (15 neurons), but at 20 neurons, with 
an error of 0.0313, it dramatically improves. This 
suggests that performance has improved thus 
far. For higher neurons, errors stabilize at 0.0510 
and 0.0300. 
 
Configuration 3 has the mean absolute errors of 
0.0637, 0.0368, 0.0342, 0.0381, and 0.0992. It is 
more stable than Configuration 2, with shallow 
errors in most circumstances, except the most 
significant error of 0.0992. This spike at 0.0992 
indicates instability or possibly over-fitting in 
some circumstances, but it performs marginally 
better than Configuration 2. Errors begin at 
0.0637 (10 neurons) and decrease to 0.0342 (20 
neurons) but are always moderate. At thirty 
neurons, it rises to 0.0992, indicating 
considerable instability. 
 
Configuration 1 provides this analysis's most 
significant classification performance, with fewer 
errors and greater consistency across cases. 
While Configuration 3 does quite well, 
Configuration 1 has the fewest errors overall, 
making it the most dependable for fault 
classification. Configuration 2, on the other hand, 
produces more and less stable mistakes, making 
it the least desirable alternative.  
 

3.6 Evaluation of Independent Data 
Performance for Fault location 

 
Fig. 9 shows that Configuration 1 contains 
absolute errors of 0.0511, 0.0492, 0.0452, 
0.0564, and 0.0728. It consistently produces low 
errors across all neuron configurations. The 
errors remain less than 0.073, showing good 
accuracy and stability in fault location 
performance. The error values increase slightly 
as the number of neurons increases, but they 
stay low and constant overall. Configuration 1 
demonstrates good stability and accuracy in fault 
location tasks. The errors are continuously 
minimal, indicating that it can successfully 
handle fault locations across various neuron 
configurations. Errors vary from 0.0452 (20 
neurons) to 0.0728 (30 neurons), which are 
consistently low and steady across all neuron 
counts. This exhibits the dependability and 
precision in fault location operations. 

Configuration 2 has Absolute Errors of 0.1245, 
0.2570, 0.1194, 0.3637, and 0.1833. This 
combination produces much increased errors, 
particularly with specific neurons. The errors 
significantly rise (0.2570, 0.3637), indicating low 
accuracy and instability in fault location tasks. 
The wide range in error magnitude suggests that 
this setup struggles to maintain accuracy as the 
network size changes. It shows                     
significantly higher erratic errors, peaking at 
0.3637 (25 neurons) and beginning at 0.1194 
(10 neurons), indicating poor fault location 
performance. 
 
Configuration 3 has absolute errors of 0.1101, 
0.1141, 0.0894, 0.1339, and 0.1559. 
Configuration 3 contains more significant error 
numbers than Configuration 1, yet it  
outperforms Configuration 2. The errors are 
more constant but still in the higher range, 
reaching up to 0.1559 and indicating moderate 
performance with potential over-fitting in some 
neuron configurations. Compared to 
Configuration 2, errors are more excellent but 
consistent, ranging from 0.0894 (20 neurons) to 
0.1559 (30 neurons). Because of this, 
Configuration 3 is less appropriate for precisely 
locating faults. 
 
Configuration 1 is the most effective choice for 
fault location since it consistently produces the 
fewest and most stable faults across neuron 
configurations. Configurations 2 and 3 have 
greater error values, with Configuration 2 
performing the worst due to huge error spikes. 
Thus, Configuration 1 is the most dependable for 
fault location tasks.  
 

3.7 Percentage Accuracy for 
Identification, Classification, and 
Location 

 
Assume that the accuracy is inversely 
proportional to the absolute inaccuracy and 
produce a % accuracy rating for each 
arrangement. The accuracy percentage can be 
obtained by applying the accompanying formula: 
 

Accuracy (%) = (1−Mean Absolute Error) × 100 
(2) 

 
Assume the maximum possible error is 1 
(100%). 
 
Using the results from the independent test for 
identification, classification and location, the 
following values are obtained: 
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Table 1. Percentage Accuracy Obtained Across All the Configurations 
 

Task Configuration Mean Absolute Error Accuracy (%) 

Identification 
 

Configuration 1 
Configuration 2 
Configuration 3 

0.04406 
0.02004 
0.06646 

95.59% 
97.99% 
93.35% 

Classification  Configuration 1 
Configuration 2 
Configuration 3 

0.04352 
0.05688 
0.0544 

95.65% 
94.31% 
94.56% 

Location  Configuration 1 
Configuration 2 
Configuration 3 

0.05494 
0.20958 
0.12068 

94.51% 
79.04% 
87.93% 

 
Table 2. Fault Identification Maximum and Minimum Error Comparison 

 

Fault Type Max. Mean 
Absolute Error 

Distance 
(KM) 

Fault Resistance 
(ohm) 

Error % Min. Mean 
Absolute Error 

Distance (KM) Fault Resistance 
(ohm) 

Error % 

AG 0.0176 20 1 2% 0.00099 80 0.5 0% 
BG 0.01629 80 0.1 2% 0.00238 70 0.05 0% 
CG 0.01867 80 1 2% 0.00013 70 0.05 0% 
ABG 0.10593 10 1 11% 0.00002 30 0.05 0% 
BCG 0.03749 10 0.05 4% 0.00459 10 0.1 0% 
ACG 0.03562 30 0.1 4% 0.00315 10 0.5 0% 
AB 0.05742 100 0.01 6% 0.00047 20 0.1 0% 
BC 0.03651 10 0.05 4% 0.00383 80 0.1 0% 
AC 0.03193 100 0.05 3% 0.00029 50 0.5 0% 
ABC 0.02512 60 0.05 3% 0.00453 10 0.05 0% 
NF 0.01047 20 1 0% 0.01151 60 0.5 1% 
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Table 3. Fault Classification Maximum and Minimum Error 
 

Fault Type Max. Mean 
Absolute Error 

Distance 
(KM) 

Fault Resistance 
(ohm) 

Error % Min. Mean 
Absolute Error 

Distance (KM) Fault Resistance 
(ohm) 

Error % 

AG 0.01974 10 0.01 2% 0.0023 20 0.05 0% 
BG 0.00115 10 0.01 1% 0.00357 50 0.5 0% 
CG 0.02458 20 0.01 2% 0.00088 80 1 0% 
ABG 0.07327 20 1 7% 0.0027 30 0.01 0% 
BCG 0.12479 20 0.1 12% 0.00505 30 0.05 0% 
ACG 0.08366 10 0.1 8% 0.01316 20 1 1% 
AB 0.08100 10 0.05 8% 0.00269 50 0.5 0% 
BC 0.07016 20 0.05 7% 0.00407 20 0.01 0% 
AC 0.05109 50 0.5 5% 0.0187 20 0.05 2% 
ABC 0.03288 20 0.1 3% 0.000171 70 0.5 0% 
NF 0.02548 100 0.01 3% 0.02436 20 0.01 0% 

 
Table 4. Fault Location Maximum and Minimum Error 

 

Fault Type Max. Mean 
Absolute Error 

Distance 
(KM) 

Fault Resistance 
(ohm) 

Error % Min. Mean 
Absolute Error 

Distance (KM) Fault Resistance 
(ohm) 

Error % 

AG 12.186 80 0.5 12% 0.106 90 0.1 0.% 
BG 8.776 10 0.05 9% 0.035 70 0.1 0% 
CG 7.045 20 0.1 7% 0.080 60 1 0% 
ABG 12.291 30 0.01 12% 0.791 50 0.01 1% 
BCG 11.518 30 0.05 12% 0.219 30 0.1 0% 
ACG 7.101 30 1 7% 0.407 70 1 0% 
AB 13.429 20 0.1 13% 1.417 80 1 1% 
BC 11.991 20 0.05 12% 0.195 90 1 1% 
AC 3.648 90 0.5 4% 0.398 50 1 0% 
ABC 8,688 10 0.05 9% 0.266 50 0.1 0.% 
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Table 1 shows the percentage accuracy of the 
faults analysis according to their different setups. 
The Mean Absolute Error (MAE) is used to 
calculate accuracy for each activity, and it is 
inversely related to accuracy, implying that lower 
error numbers equate to greater accuracy. 
 

With an accuracy rate of about 98%, 
identification outperforms the other two jobs and 
is the most dependable in this Investigation. The 
best configuration for this work has been offered 
by Configuration 2. With over 95% accuracy, the 
classification task executes excellently by 
Configuration1. While Configuration 1 performs 
strongly, it performs slightly lower than 
identification regarding fault class distinction. 
Also, fault location performance is excellent, with 
more than 94% accuracy. However, location 
accuracy is less accurate than identification and 
classification because it is more difficult to 
determine the precise location of the fault. 
 

Table 2 compares the maximum and minimum 
mean absolute errors for different fault types 
during identification. It also gives the associated 
distances, fault resistances, and error 
percentages, showing how effectively each fault 
type is identified. 
 

Fault types such as AG, BG, CG, ABC, and NF 
have minimal maximum and minimum errors of 0 
and 3%, indicating accurate identification in 
these cases. 
 

The ABG and AB faults have the highest 
maximum errors (11 percent and 6 percent, 
respectively), which shows that these fault types 
are more difficult to identify due to their 
complexity. 
 

The errors across all fault types are often 
relatively low, indicating that the identification 
system functions well over a wide range of 
distances and fault resistance. 
 

Table 3 compares the maximum and minimum 
mean absolute errors for several fault categories 
in fault classification. The corresponding error 
percentages, fault resistances, and associated 
distances are given for each fault type, providing 
information about the classification performance. 
 

The best results are obtained at the maximum 
and minimum errors for fault types like AG, BG, 
CG, ABC, and NF, which are extremely small 
and fall between 1% and 3%. Certain fault types 
are accurately classified even at higher fault 
resistances and longer distances. 

AB and BCG faults have the highest maximum 
errors (8% and 12%, respectively) regarding 
challenging defects. This error shows that the 
classification procedure for these fault types is 
more complex, leading to significantly less 
accurate performance when compared to other 
fault types. Inaccuracies were also related to 
longer lengths and lower resistances. The bulk 
of detected faults have extremely low error 
percentages, indicating that the system performs 
well across various fault types, resistances, and 
distances. The project will seek a solution to one 
of the most critical components of ensuring the 
reliability and efficiency of power transmission 
systems, i.e., precise fault detection. Precision 
fault detection contributes to power transmission 
networks' operational dependability and safety. 
 
Table 4 compares the maximum and minimum 
mean absolute errors for various fault types and 
the accompanying fault resistances and 
distances. It also gives the error percentages 
related to every situation. 
 
The AB and ABG faults had the highest errors, 
with maximum mean absolute errors of 13.429 
(13%) and 12.291 (12%), respectively, occurring 
at shorter distances (20-30 KM) and low fault 
resistances (0.01-0.1 ohm). The error rates for 
BC and BCG faults are also noteworthy, with 
11.991 (12%) and 11.518 (12%), respectively. 
The fact that these faults usually occur at low 
resistances suggests that locating them 
precisely in some situations may be challenging. 
 
On the other hand, faults like AG, BG, and ABC 
have more fault resistance and produce fewer 
errors across greater distances. For example, 
the AG fault has a minimum error of 0.106 at 90 
km and 0.1 ohm, but BG faults have an error of 
0.035 at 70 km. Similarly, ABC defects have a 
low error of 0.266 at 50 km. 
 
Short distances and lower faults result in more 
significant errors for most fault types, which 
could be attributed to fault resistance. However, 
high fault resistances with longer distances have 
high fault location accuracy. Faults such as AB, 
ABG, and BC present the most significant 
obstacles, but faults such as AG and BG exhibit 
higher precision in their location. 
 
Lower fault resistances tend to raise the 
maximum error percentage, but higher fault 
resistances lead to lower minimum errors, most 
likely due to improved detection sensitivity under 
high-resistance conditions. 
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4. CONCLUSION 
 
A detailed effort has been conducted on fault 
analysis on transmission lines utilizing neural 
networks, precisely the back-propagation 
method. The primary purpose is to find the best 
neural network configuration to ensure high 
accuracy and stability across different fault 
scenarios to detect, categorize, and locate faults 
in a 100-kilometer transmission line at 132kV 
and 50Hz frequency. This study evaluated three 
different ANN configurations with varying neuron 
counts for fault analysis on power transmission 
systems. Strong accuracy performance is shown 
for all tasks when the neural network models for 
the fault analysis are analyzed. 
 
Using Configuration 2, fault identification 
attained a fantastic accuracy of 97.99%, 
demonstrating the system's ability to identify the 
fault with little error. 
 
With Configuration 1, fault classification attained 
an accuracy of 95.65%. This shows that the 
system can successfully classify different kinds 
of faults, although with a little less accuracy than 
when it comes to identification. Even at the 
accuracy of 94.51% (Configuration 1), fault 
location is still performing at a high level. The 
accuracy of fault localization slightly decreased 
because finding a fault is frequently more 
complex than classifying or identifying it.  
 
Configuration 1 achieves perfect fault 
classification and location results, while 
Configuration 2 excels in fault identification. This 
implies that specific configurations might be 
more appropriate for various jobs, depending on 
complexity and needs. The remarkable outcome 
in all three tasks demonstrates the approaches' 
potential to significantly improve transmission 
line operations' reliability, efficiency, and 
resilience. 
 

DISCLAIMER (ARTIFICIAL INTELLIGENCE) 
 
Author(s) hereby declare that NO generative AI 
technologies such as Large Language Models 
(ChatGPT, COPILOT, etc.) and text-to-image 
generators have been used during the writing or 
editing of this manuscript. 
 

ACKNOWLEDGEMENTS 
 
My sincere appreciation goes out to God 
Almighty for his kindness, protection, strength, 
intelligence, and wisdom during my academic 

journey. This initiative has succeeded because of 
his engagement. 
 

I want to thank my esteemed supervisors, Dr. E. 
M. Eronu and Dr. Alfa, for their assistance, 
guidance, and support throughout this project. 
Their dedication and encouragement have had a 
significant impact on the course of our research. 
 

I am deeply indebted to my family, Alh. Rhodiat 
Akanbi, Dr. Jubril Akolade, Mr.Kaoyde 
Ogungbade, and others, for their steadfast belief 
in my aspirations, unceasing support, and 
uplifting encouragement. They have consistently 
been a wellspring of love and empathy, and I am 
profoundly grateful. 
 

COMPETING INTERESTS 
 

Authors have declared that no competing 
interests exist. 
 

REFERENCES 
 

Adibi, M. M., & Fink, L. H. (1994). Power system 
restoration planning. IEEE Transactions on 
Power Systems, 9(1), 22–28. 
https://doi.org/10.1109/59.295994 

Almobasher, L., & Habiballah, I. (2020). Review 
of power system faults. International 
Journal of Engineering and Technical 
Research, 9, 61. 

Babu, S., et al. (2011). Fault location in power 
systems. International Journal of 
Engineering, Science and Technology, 
2(3), 1-8. 

Dasgupta, A., et al. (2012). Transmission line 
fault classification and location using 
wavelet entropy and neural network. 
Electric Power Components and Systems. 

GeneratorSource. (n.d.). Causes of power 
failures. Retrieved from 
https://www.generatorsource.com/Causes_
of_Power_Failures.aspx 

Hachem-Vermette, C., & Yadav, S. (2023). 
Impact of power interruption on buildings 
and neighborhoods and potential technical 
and design adaptation methods. 
Sustainability, 15(21), 15299. 
https://doi.org/10.3390/su152115299 

He, Z., Lin, S., Deng, Y., Li, X., & Qian, Q. 
(2014). A rough membership neural 
network approach for fault classification in 
transmission lines. International Journal of 
Electrical Power & Energy Systems, 61, 
429-439. 
https://doi.org/10.1016/j.ijepes.2014.04.01
4 

https://www.generatorsource.com/Causes_of_Power_Failures.aspx
https://www.generatorsource.com/Causes_of_Power_Failures.aspx


 
 
 
 

Tunde et al.; J. Eng. Res. Rep., vol. 27, no. 1, pp. 140-154, 2025; Article no.JERR.129339 
 
 

 
154 

 

Hines, P., Apt, J., & Talukdar, S. (2009). Large 
blackouts in North America: Historical 
trends and policy implications. Energy 
Policy, 37(12), 5249-5259. 
https://doi.org/10.1016/j.enpol.2009.07.010 

Jamil, M., Sharma, S. K., & Singh, R. (2015). 
Fault detection and classification in 
electrical power transmission system using 
artificial neural network. SpringerPlus, 4, 1-
3. https://doi.org/10.1186/s40064-015-
0957-7 

Kapoor, G., Soni, V., & Yadvendra, J. (2020). 
Fast Walsh–Hadamard transform-based 
artificial intelligent technique for 
transmission line fault detection and faulty 
phase recognition. In Proceedings of the 
International Conference on Artificial 
Intelligence: Advances and Applications 
2019 (pp. 141-149). Springer Singapore. 

Kasztenny, B., Voloh, I., & Hubertus, J. G. (2004, 
April). Applying distance protection to 
cable circuits. In Proceedings of the 57th 
Annual Conference for Protective Relay 
Engineers (pp. 46-69). IEEE. 

Khan, M. (2024). Investigating the effects of 
ageing on transmission system 
dependability through the use of an 
artificial neural network. Journal of 
Electrical Systems, 20, 1059-1066. 
https://doi.org/10.52783/jes.2838 

Koley, E., Verma, K., & Ghosh, S. (2015). An 
improved fault detection, classification, and 
location scheme based on wavelet 
transform and artificial neural network for 
six-phase transmission line using single-
end data only. SpringerPlus, 4(1), 1-22. 
https://doi.org/10.1186/s40064-015-0963-9 

Krarti, M. (2003). Solar energy engineering: 
Processes and systems. Journal of Solar 
Energy Engineering, 125(3), 331-342. 
https://doi.org/10.1115/1.1577052 

Liu, X. W. (2021). Research on transmission line 
fault location based on the fusion of 
machine learning and artificial intelligence. 
Security and Communication Networks, 
2021, Article ID 6648257, 8 pages. 
https://doi.org/10.1155/2021/6648257 

Paithankar, Y. G., & Bhide, S. R. (2012). 
Fundamentals of power system protection. 
PHI Learning. 

Ranjithkumar, K., Kumar, N. R. N., Nishanth, S., 
Anand, A. S. S., & Priyanka, S. (2022). 
Distribution fault identification and 
protection using LabVIEW. In Proceedings 
of the 2022 International Conference on 
Computer Communication and Informatics 
(ICCCI), Coimbatore, India, 1-3. 
https://doi.org/10.1109/ICCCI54379.2022.9
741013 

R-bloggers. (2021, July). How to calculate mean 
absolute error in R. Retrieved from 
https://www.r-bloggers.com/2021/07/how-
to-calculate-mean-absolute-error-in-r/ 

Saha, M. M., & Izykowski, E. (2010). Fault 
location on power networks. Springer-
Verlag London Limited. 

Saini, M., bin Mohd Zin, A. A., bin Mustafa, M. 
W., Sultan, A. R., & Rahimuddin, M. 
(2016). Transmission line fault detection 
using discrete wavelet transform and back-
propagation neural network based on 
Clarke’s transformation. Applied 
Mechanics and Materials, 818, 156–165. 
https://doi.org/10.4028/www.scientific.net/A
MM.818.156 

Saleh, S. A., & Salam, M. A. (2012). 
Transmission line fault detection and 
classification using discrete wavelet 
transform and artificial neural network. 
Journal of Electrical Engineering and 
Technology, 7(4), 409-417. 
https://doi.org/10.5370/JEET.2012.7.4.409 

 
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of the publisher and/or the editor(s). This publisher and/or the editor(s) disclaim responsibility for 
any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. 

 

© Copyright (2025): Author(s). The licensee is the journal publisher. This is an Open Access article distributed under the terms 
of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, 
distribution, and reproduction in any medium, provided the original work is properly cited.  
 
 

 

Peer-review history: 
The peer review history for this paper can be accessed here: 

https://www.sdiarticle5.com/review-history/129339 

 

https://www.r-bloggers.com/2021/07/how-to-calculate-mean-absolute-error-in-r/
https://www.r-bloggers.com/2021/07/how-to-calculate-mean-absolute-error-in-r/
https://www.sdiarticle5.com/review-history/129339

