
Review Article
Artificial Intelligence in Coronary Computed Tomography
Angiography: From Anatomy to Prognosis

Giuseppe Muscogiuri,1 Marly Van Assen,2 Christian Tesche,3,4 Carlo N. De Cecco,2

Mattia Chiesa,1 Stefano Scafuri,5 Marco Guglielmo,1 Andrea Baggiano,1 Laura Fusini,1

Andrea I. Guaricci,6 Mark G. Rabbat,7,8 and Gianluca Pontone 1

1Centro Cardiologico Monzino, IRCCS, Milan, Italy
2Division of Cardiothoracic Imaging, Nuclear Medicine and Molecular Imaging, Department of Radiology and Imaging Sciences,
Emory University, Atlanta, GA, USA
3Department of Cardiology, Munich University Clinic, Ludwig-Maximilians-University, Munich, Germany
4Department of Internal Medicine, St. Johannes-Hospital, Dortmund, Germany
5Division of Interventional Structural Cardiology, Cardiothoracovascular Department, Careggi University Hospital, Florence, Italy
6Institute of Cardiovascular Disease, Department of Emergency and Organ Transplantation, University Hospital “Policlinico
Consorziale” of Bari, Bari, Italy
7Loyola University of Chicago, Chicago, IL, USA
8Edward Hines Jr. VA Hospital, Hines, IL, USA

Correspondence should be addressed to Gianluca Pontone; gianluca.pontone@ccfm.it

Received 29 October 2020; Revised 30 November 2020; Accepted 9 December 2020; Published 18 December 2020

Academic Editor: Luca Liberale

Copyright © 2020 Giuseppe Muscogiuri et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Cardiac computed tomography angiography (CCTA) is widely used as a diagnostic tool for evaluation of coronary artery disease
(CAD). Despite the excellent capability to rule-out CAD, CCTA may overestimate the degree of stenosis; furthermore, CCTA
analysis can be time consuming, often requiring advanced postprocessing techniques. In consideration of the most recent ESC
guidelines on CAD management, which will likely increase CCTA volume over the next years, new tools are necessary to
shorten reporting time and improve the accuracy for the detection of ischemia-inducing coronary lesions. The application of
artificial intelligence (AI) may provide a helpful tool in CCTA, improving the evaluation and quantification of coronary stenosis,
plaque characterization, and assessment of myocardial ischemia. Furthermore, in comparison with existing risk scores, machine-
learning algorithms can better predict the outcome utilizing both imaging findings and clinical parameters. Medical AI is
moving from the research field to daily clinical practice, and with the increasing number of CCTA examinations, AI will be
extensively utilized in cardiac imaging. This review is aimed at illustrating the state of the art in AI-based CCTA applications
and future clinical scenarios.

1. Introduction

Coronary computed tomography angiography (CCTA) rep-
resents an excellent tool for the evaluation of patients with
suspected stable coronary artery disease (CAD) [1–6]. There
is strong evidence in the literature that CCTA can accurately
rule out the presence of CAD, having a positive impact in
terms of prognosis and cost [7–11].

CCTA represents an important step in clinical manage-
ment of patients with suspected CAD; however, it is impor-
tant to keep in mind that the majority of CCTA results in
no evidence of significant CAD [12, 13]. Furthermore, the
presence of obstructive CAD on CCTA is not always associ-
ated with the development of myocardial ischemia [14].

The application of artificial intelligence (AI) in cardiac
radiology is aimed at facilitating the management of patients
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with suspected CAD ranging from diagnosis to prognostic
stratification [15]. In particular, the application of AI can
be helpful in reducing the time of image analysis and rule
out patients without evidence of significant disease that
may benefit from medical therapy [16]. Furthermore, it can
be helpful for detection of myocardial ischemia [17]. In terms
of prognostic stratification, AImay play a promising role, iden-
tifying algorithms that can stratify the risk of major adverse
cardiovascular events (MACE) with high accuracy [18].

2. Basic Concept of AI in Clinical Medicine

The AI industry has seen massive growth in a variety of fields
in the past decade, with the field of medicine not being an
exception. The basis of AI is mathematics and computer sci-
ence with the three main pillars being (1) big data, (2) high
performance computing infrastructure, and (3) algorithm
development. The exponential growth in digital storage capa-
bilities, data collection systems, and computing power
enabled AI applications in a wide variety of fields. The cur-
rent digital era leads to an increased amount of information,
which is beneficial to the development of AI algorithms. The
technological developments make it possible to develop algo-
rithms that are able to deal with the large amount of data and
complexity typical of the digital era we live in.

With AI currently entering the medical field, early stage
applications have mainly focused on automatization of med-
ical tasks; more recently, the focus has shifted towards prog-
nostication and risk prediction. Many studies investigate the
potential role of AI in supporting clinicians in their day-to-
day tasks, assisting in workflow optimization, quantification,
diagnosis and prognostication, and reporting. However,
many clinical AI applications are currently only used in a
research setting and are far from being implemented into
clinical practice. There are examples of successful AI imple-
mentation [19]. The Data Science Institute of the American
College of Radiology has published a list of all FDA cleared
AI algorithms for radiology purposes [20] with their state
of validation and clinical use. However, there are also exam-
ples of applications that are not ready for clinical utilization
[21, 22]. For example, Zech et al. assessed how well convolu-
tional neural networks (CNN) generalized across three hos-
pital systems for a simulated pneumonia screening task.
They found that their evaluated CNN performed systemati-
cally worse on unseen data from different hospitals compared
to the training set. In addition, they reported that the CNN
identified disease burden within hospital system and depart-
ment, which may confound predictions [21]. A thorough
clinical validation is essential for the acceptance and imple-
mentation of AI into clinical practice [22]. A study by Kim
et al. evaluated the validation of AI algorithms reported in
AI research papers from all medical fields, including radiol-
ogy, dermatology, and pathology. They reported that only
6% of all studies used external validation to assess AI algo-
rithm performance [22]. Since then, several guidelines have
been published to improve the validation process of medical
AI applications [23, 24]. Recently, we have seen an increase
in publications that externally validate industry developed
AI algorithms [25, 26]. In addition, regulations and guide-

lines regarding protection of patient privacy and cybersecu-
rity are also needed. Creating awareness and increasing
basic AI knowledge for clinicians are an essential step to pro-
mote wide AI acceptance among physicians and patients.

The European commission released a white paper on AI
in February 2020, including statements on the use of AI for
medical purposes [27, 28]. They state that current EU regula-
tions already provide a high level of protection through med-
ical device laws and data protection laws; however, they
proposed to add specific regulations including requirements
of training data, record-keeping of used datasets, transpar-
ency, robustness and accuracy, and human oversight. The
US counterpart, the U.S. Food and Drug Administration, also
released statements regarding the use of medical AI. While
application for medical assistance, such as quantification
applications, only requires a proof of equivalence to other soft-
ware (510(k)) [20, 29], application for clinical interpretation of
medical data is a more elaborate FDA approval (PMA).

Besides the legal framework for medical AI, there are
some ethical considerations that will play a key role [30].
With the use of medical data, issues such as gender, race, or
economical discrimination due to underrepresentation in
the training populations should be discussed and evaluated.
In addition, AI-based risk prediction and prognostication
can be used to limit the choice and coverage of healthcare
insurance in certain groups of patients or can affect impor-
tant life choices. Like every new technology in the medical
field, it is imperative to learn how to balance the benefits
and risks associated with a broad AI implementation and
how to democratize AI and make sure that everybody can
benefit equally from its use. The Joint European and North
American Multisociety task force discusses these issues in
detail, emphasizing that more research is needed on the
implementation of AI into clinical practice [31]. Figure 1
shows the process of DICOM images elaboration for devel-
opment of DL algorithm.

3. AI Application for the Evaluation of Coronary
Artery Stenosis

The grading and coronary segments involved with obstructive
of CAD have been associated with a worse prognosis [32].

Often assessment of CAD stenosis is time consuming,
requiring multiplanar reconstruction selection of the best
phase in the cardiac cycle for a correct assessment of coro-
nary arteries and depends on the experience of the reader
[15]. After the CTA analysis, results may be reported exten-
sively in the report following the guidelines of SCCT [33]
or in a structured patient-based approach identifying a spe-
cific CAD-RADS grading [34].

Zreik et al. developed a 3D CNN that was able to charac-
terize the plaque and evaluate the grading of stenosis [35].
The authors developed two models; the first one analyzed
the performance of the algorithm to differentiate patients
with/without obstructive CAD demonstrating a per-segment,
vessel, and patient accuracy of 0.94, 0.93, and 0.85, respec-
tively [35]. The second model was developed for identifica-
tion of no stenosis, no significant stenosis, and significant
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stenosis; the second model showed a per-segment, vessel, and
patient accuracy of 0.80, 0.76, and 0.75, respectively [35].

Kang et al. developed an AI technique based on a two-
step algorithm with a vector machine that was useful for
the evaluation of CAD stenosis [36]. On a population of 42
patients acquired with dual source CT, the algorithm was
able to identify the grade of stenosis in one second with a sen-
sitivity, specificity, and accuracy in the proximal and midseg-
ments of 93%, 95%, and 94%, respectively [36].

Yoneyama et al. evaluated the possibility to identify the
grading of coronary stenosis and its impact in terms of ische-
mia using a cohort of patients who underwent CCTA and
perfusion single photon emission computed tomography
(SPECT) [37]. The authors focused on the application of an
artificial neural network (ANN) with hybrid imaging
obtained by the combination of CCTA and myocardial per-
fusion SPECT [37]. Using this algorithm, the specificity, sen-
sitivity, and accuracy to identify coronary artery stenosis
>70% were 31%, 78%, and 67%, respectively [37].

Van Hamersvelt et al. developed an algorithm of AI that
evaluated the presence of significant CAD using a combined
approach of AI that analyzes the myocardium and compared
it with invasive FFR [38]. They found that a combined
approach was able to identify hemodynamically significant
CAD with an AUC of 0.76.

Two studies developed an automated approach of
CADRADS in clinical practice [16, 39].

Muscogiuri et al. evaluated the impact of a new deep
learning algorithm based on CNN for the classification of
CAD-RADS in a cohort of 288 patients who underwent
CCTA for a clinical indication [16]. The time of analysis
and accuracy for each of the following was extrapolated:
Model A (CAD-RADS 0 vs. CAD-RADS 1-2 vs. CAD-
RADS 3, 4, 5), Model 1 (CAD-RADS 0 vs. CAD − RADS >
0), and Model 2 (CAD-RADS 0-2 vs. CAD-RADS 3-5)
[16]. The sensitivity, specificity, negative predictive value,
positive predictive value, and accuracy of the models com-

pared to humans were the following: Model A, 47%, 74%,
77%, 46%, and 60%; Model 1, 66%, 91%, 92%, 63%, and
86%; and Model 2, 82%, 58%, 74%, 69%, and 71% [16]. The
average time of analysis of CNN was significantly shorter
compared to humans, with an average time of analysis
around 104 seconds [16]. This study highlights the possibility
to have an automatic discrimination between patients with
CAD − RADS > 0 with a high diagnostic accuracy and short
time. This is an important finding if we assume an increased
number of CCTA scans in the future, many of which may not
show CAD [12, 13]. A representative case showing the appli-
cation of the CAD-RADS software for detection of AI is
shown in Figure 2.

Another important application of automatic CAD-RADS
classification was shown by Huang et al. [39]. The authors
classified CAD-RADS using a deep learning algorithm and
subsequently correlated the results with the presence of arte-
rial breast calcification. The authors showed that the pres-
ence of high grade CAD-RADS was closely associated with
increased presence of breast arterial calcification [39]. This
finding is important because the assessment of breast arterial
calcification in screening for breast cancer can be utilized for
early identification of patients with CAD.

4. AI for Evaluation of Plaque Analysis

4.1. Calcium Score. Coronary Artery Calcium Score (CACS)
is an independent predictor of adverse cardiovascular
events [40–42].

CT images for the evaluation of calcium score are often
acquired using an ECG-gated, no contrast technique and seg-
mented calculating a calcium volume, and mass obtaining a
specific value of calcium score [43]. Currently, CACS is per-
formed by semiautomatic segmentation and despite a time
consuming approach is still the gold standard [44].

The evaluation of CACS using an AI algorithm can defi-
nitely speed up the time of reporting.

One of the first articles describing the evaluation of CACS
using an algorithm of AI was developed by Isgum et al. [45].
The authors analyzed the impact of the automated algorithm
on ECG-gated, noncontrast images, and identified coronary
calcification in 73.8% of cases and 93.4% of cases was cor-
rectly classified in the respective risk group [45].

Sandsted et al. evaluated the performance of an AI algo-
rithm for the evaluation of CACS compared to semiauto-
mated CACS [46]. The authors found a Spearman’s rank
correlation coefficient for Agatston Score, Calcium Volume
Score, and Calcium Mass Score between the AI algorithm
and semiautomatic approach of 0.935, 0.932, and 0.934,
respectively, while the intraclass correlations were 0.996,
0.996, and 0.991, respectively, [46].

Despite CACS traditionally being evaluated using ECG-
gated scans, recently, Takx et al. analyzed the impact of AI
for evaluation of CACS in non-ECG-gated and noncontrast
images acquired in a cohort of patients undergoing a CT
for lung cancer screening [47]. In a cohort of 1793 patients,
the authors analyzed the impact of an AI algorithm for detec-
tion of CACS. Despite a small percentage of the population
(44 patients representing the 2.5%) being excluded from the
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Figure 1: Streamline used for the development of images useful for
DL algorithm starting from DICOM images.
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study due to image quality, the authors found good reliabil-
ity with a weighted k of 0.85 for Agatston risk score
between the automated and reference scores [47]; however,
an underestimation in terms of volume of calcium was
observed in the automatic segmentation compared to man-
ual segmentation [47].

The combination of CACS analysis and lung cancer
screening can be a powerful combination in clinical practice
to identify patients that may benefit from therapy.

Wolterink et al. described the application of an auto-
mated algorithm for the evaluation of CAC in 250 patients
who underwent CCTA [48]. The authors described a

(a)

(b) (c)

Figure 2: A 54-year-old female patient scheduled for invasive coronary angiography. Reconstruction for CAD-RADS algorithm is shown in
(a). The algorithm provides a CAD − RADS = 0. This finding was confirmed on coronary angiography that shows no disease in the left
coronary artery (b) and right coronary artery (c).
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supervised approach and developed a CNN algorithm that
was able to identify CAC with a sensitivity of 0.72 and an
interclass correlation of 0.94 between CAC derived from
CCTA and standard evaluation of CAC [48]. This approach
may lead to radiation dose reduction.

Finally, Van Velzen et al. evaluated calcium scores from
different CT without contrast [49]. 7240 examinations were
analyzed from PET attenuation CT images and CT of the
chest demonstrating an intraclass correlation coefficient
ranging from 0.79 to 0.97 when compared with manual seg-
mentation [49]. An approach that is independent of ECG-
gated acquisition, allowing for automated analysis, represents
an important tool.

4.2. Plaque Phenotype. Assessment of plaque composition is
extremely important in CCTA reporting; indeed, identifica-
tion of fibrous or calcified plaques can be extremely impor-
tant for patient management [50]. Presence of calcified
plaques is associated with better outcome compared to
fibrous plaques, especially in the presence of high-risk plaque
characteristics [51].

The application of AI can facilitate and speed up the anal-
ysis of CCTA providing accurate information on plaque
analysis in a relative short time.

Zreik et al. developed an algorithm that was able to iden-
tify the plaque morphology and severity of stenosis [35].
From a sample size of 95 patients, the authors developed an
AI approach based on 3D CNN that extrapolated the charac-
teristics of plaque along the coronary arteries. Subsequently,
the images were tested on a smaller cohort composed of 65
patients showing an accuracy of 0.85 for differentiation
between plaque and no plaque while the accuracy for differ-
entiation between different types of plaque was 0.77 [35].

Another application of AI for identification of different
plaque types was developed by Dey et al. The authors devel-
oped an algorithm that automatically differentiated calcified
plaque (r: 0.88) and noncalcified plaque (r: 0.98) with a good
correlation compared to manual segmentation [52].

A different, combined approach of radiomics and
machine learning (ML) for the evaluation of plaque charac-
teristics has been demonstrated to characterize plaque [53].
Using radiomics, from standard images, it is possible to
obtain several parameters that can constitute the fingerprint-
ing of a plaque.

Kolossvary et al. evaluated the radiomic features of
plaques showing napkin ring sign (NRS) which has been
associated with poor outcome [54]. The authors describe
the parameter called “short-run low-gray-level emphasis”;
this parameter was able to identify plaque with NRS with
a better accuracy (AUC 0.89) compared to mean plaque
attenuation (AUC 0.75), the latter used in standard clinical
practice [54].

An ML approach can identify the presence of thin cap
fibroatheroma (TCFA) overcoming the technical limitation
of CCTA [53]. In particular, Masuda et al. analyzed the appli-
cation of an ML histogram for the identification of fibrous
and fatty or fibrous-fatty plaques compared to IVUS showing
an accuracy of 0.92, while standard parameters showed an
accuracy of 0.83 [55].

4.3. AI for the Assessment of Ischemia: CT-Derived Fractional
Flow Reserve and CT Perfusion. Recent research and develop-
ment in AI has been applied in multiple potential applications
of cardiac CT-derived myocardial ischemia assessments. Most
software applications herby deal with CT-derived fractional
flow reserve (FFR) for the detection of hemodynamically
significant CAD. Only few studies of AI applications using
CT perfusion have been published so far. In terms of CT-
FFR, ML solutions have been provided by only one vendor
[56, 57]. However, this approach is for research purposes
only. More recently, a commercially available software
application (DeepVessel FFR) has been introduced by Keya
Medical (Beijing, China) [58].

ML-based CT-FFR employs a multilayer neural network
framework that was trained and validated offline against the
former CFD approach by using a virtual dataset of 12.000
synthetic 3D coronary models [56]. The clinical validation
of the ML approach has been conducted in one multicenter
trial and several single-center studies in relation to CCTA
and invasive coronary angiography (ICA) assessing lesion-
specific ischemia. The MACHINE registry (Diagnostic
Accuracy of a Machine-Learning Approach to Coronary
Computed Tomographic Angiography - Based Fractional
Flow Reserve: Result from the MACHINE Consortium)
investigated ML-based CT-FFR in 351 patients with 525 ves-
sels from 5 sites in Europe, Asia, and the United States [57].
The diagnostic accuracy of ML-based CT-FFR was signifi-
cantly better when compared to that of CCTA (ML CT-
FFR 78% vs. cCTA 58%). Likewise, the AUC for identifying
hemodynamically significant CAD was superior for ML-
based CT-FFR (AUC: 0.84) in comparison to that of CCTA
alone (AUC: 0.69, p < 0:05). In accordance with the results
of the MACHINE registry, several single-center studies have
evaluated the diagnostic performance of ML-based CT-FFR,
reporting sensitivities and specificities ranging from 79% to
82% and 91% to 94%, respectively [59, 60]. ML-based CT-
FFR has also proven its feasibility in coronary calcification.
A recent study by Tesche et al. [61] investigated the impact
of coronary calcifications on the accuracy of ML-CT-FFR.
The authors reported a good but statistically significant dif-
ferent diagnostic performance of ML CT-FFR in heavily cal-
cified vessels in comparison to low-to intermediate ranges of
calcifications (AUC: 0.71 vs. 0.85, p = 0:04). Another sub-
study of the MACHINE registry assessed the impact of gen-
der on the diagnostic accuracy of ML CT-FFR with no
significant difference in the AUCs in men when compared
to that of women (AUC: 0.83 vs. 0.83, p = 0:89) [62]. Overall,
ML-based CT-FFR provides high diagnostic accuracy for the
assessment of lesion-specific ischemia. A representative case
is shown in Figure 3.

Only few studies have assessed the use of AI for CT per-
fusion. However, CT perfusion offers a field with great poten-
tial for the application of AI especially for automated
identification of perfusion defects and myocardial segmenta-
tion. Preliminary results have demonstrated an AUC of 0.73
by using different ML approaches for automated segmenta-
tion and delineation of the left ventricle when compared to
manual segmentation by an expert reader [63]. In another
investigation, Han and colleagues [64] used a gradient
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boosting classifier for supervised ML in resting myocardial
perfusion CT for the identification of lesion-specific ische-
mia. The authors showed a diagnostic accuracy, sensitivity,
and specificity of 68%, 53%, and 85% of CTP added
to cCTA stenosis > 70% for predicting hemodynamically sig-
nificant CAD.

5. AI in CCTA Prognostication

Focusing on outcome, there are several manuscripts that
show the impact of CAD depicted on CCTA and prognosis
[8, 65]. An algorithm based on AI can improve risk stratifica-
tion based on standard clinical parameters.

Motwani et al. evaluated the impact of an ML algorithm
for prognostic stratification in a large cohort of 10030 patients
with follow-up of 5 years and an endpoint of mortality [66]. A

total of 25 clinical parameters and 44 CCTA parameters were
evaluated for a correct assessment of mortality that occurred
in seven hundred and forty-five patients [66]. The ML algo-
rithm was superior compared to Framingham Risk Score

(a) (b) (c)

(d) (e)

Figure 3: Coronary CT angiography in a 54-year-old man without known coronary artery disease. (a) Automatically generated curved
multiplanar reformations showing >50% stenosis of the proximal LAD (arrow). (c) 3-Dimensional color-coded mesh shows a CT-FFR
value of 0.70, indicating ischemia of the underlying stenosis (arrow). (b, d) Color-coded automated plaque assessment of the lesion
demonstrating the predominantly calcified composition of the atherosclerotic atheroma. (e) Invasive coronary angiography confirms
obstructive stenosis of the LAD (arrow) with an FFR of 0.70.

Table 1: Impact of AI in CCTA.

Task Accuracy

Coronary artery stenosis ++/+++

Coronary calcium ++

Plaque phenotype ++

Detection of ischemia ++/+++

Prognosis ++/+++

AI: artificial intelligence; CCTA: coronary computed tomography
angiography.
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(FRS) or CCTA severity risk scores with an area under curve
(AUC) of 0.79 while FRS showed an AUC of 0.61, segment
stenosis score of 0.64, segment involved score of 0.64, and
modified Duke index of 0.62 [66].

Van Rosendael et al. developed a model for risk stratifica-
tion based on a population from the CONFIRM registry [67].
The primary endpoint was a composite of myocardial infarc-
tion and death, and the algorithm was able to predict the pri-
mary endpoint with an AUC of 0.77 versus the other scores
that ranged from 0.65 to 0.70.

Tesche et al., in a small cohort of patients, developed an
AI algorithm for risk stratification in patients who underwent
CCTA with follow-up of 5.4 years [18]. The authors found
that an ML approach showed an AUC of 0.96 for MACE,
higher compared to Agatston calcium score (AUC: 0.84),
segment involved score (AUC: 0.88), and segment stenosis
score (AUC: 0.89).

6. Future Perspectives

In CCTA, the role of AI may be important for further radia-
tion dose reduction [68] without impairment of image qual-
ity and help in CCTA reporting, evaluation of CAD burden,
myocardial ischemia, and assessment of prognosis [15]
(Table 1).

Human interpretation, despite their experience, is still
prone to fatigue. Furthermore, the time of training of expert
readers requires years of experience. The application of AI in

CCTA will not substitute the cardiac radiologist; rather, AI
will represent a helpful tool for reporting and prognostic
stratification. Indeed, following the ESC guidelines [7], over
the next few years, the requests for CCTA will increase.
Therefore, a helpful tool that can decrease the time of CCTA
analysis should be embraced.

Furthermore, CCTA analysis is moving toward a model
of precision medicine. The analysis of coronary stenosis
grading is not sufficient alone. A comprehensive CCTA
report needs to provide information regarding characteriza-
tion of plaque and its hemodynamical effect; furthermore,
the joint evaluation of clinical parameters can be helpful to
stratify the patients in terms of worse outcome and can be
helpful for individual treatment plans.

It is plausible that an algorithm will be composed for
automatic analysis of CCTA images followed by detection
of myocardial ischemia (Figure 4). Subsequently, the final
results of CCTA will be evaluated according to the clinical
parameters with an AI algorithm in order to obtain a
patient-based risk profile.

Strict legislation focused on the application of AI in car-
diac imaging will be necessary to clarify the medico-legal
aspects of the AI algorithm application. Furthermore, the
development of an AI algorithm implies the analysis of a
large amount of data; this aspect is extremely important if
we consider the legal aspects due to privacy.

All these aspects need to be clarified in the future before
we consider the application of AI in routine clinical practice.

CCTA

AI 
applications

ICA
If high clinical-imaging risk features
or functional imaging assessment
already available (Stress CMR, PET,
SPECT..)

CTP FFR-CT

Choice of test based on clinical
likelihood, patient characteristics and
preference, as well as local expertise

Testing for ischemia
(Stress CMR, PET, SPECT..)(e.g., CCTA

stenosis
degree and
plaque
morphology;
calcium score)

Negative test:
CAD ruled out

Functional CT-imaging assessment

AI applications:

(e.g., CT-FFRML;
analysis of myocardial perfusion from
rest CCTA acquisition)

Figure 4: Application of AI on CCTA in the clinical setting. First, CCTA images are processed using an AI algorithm; subsequently, the
patients can be further classified in three groups: patients without obstructive CAD, patients that need invasive coronary angiography, and
patients with stenosis that could benefit from functional imaging. In the cohort of patients classified to functional imaging such as CT
perfusion or CT-FFR, an algorithm of AI can be applied in order to speed up the process.
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7. Conclusion

In the future, AI will be integrated in the CCTA workflow. AI
applications will greatly benefit CCTA practice reducing the
reporting time and providing a more accurate quantitative-
based approach to CADmanagement, moving the entire field
in the direction of precision-based medicine. However,
before we can widely implement AI solutions in our clinical
practice, we need to carefully validate the algorithms in the
light of standards for good medical practice and new medical
device utilization and carefully address possible issues on
data protection, legal framework, and ethical principles.
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