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Background. Ovarian cancer is one of the most lethal diseases of women. The prognosis of ovarian cancer patients was closely
correlated with immune cell expression and immune responses. Therefore, it is important to identify a robust prognostic
signature, which correlates not only with prognoses but also with immune responses in ovarian cancer, thus, providing
immune-related patient therapies. Methods. The weighted gene coexpression network analysis (WGCNA) was used to identify
candidate genes correlated with ovarian cancer prognoses. Univariate and multivariate Cox regression analyses were used to
construct the prognostic signature. The Kaplan-Meier method was used to predict survival, and the immune-related
bioinformatics analysis was performed using the R software. The relationship between the signature and clinical parameters was
analyzed with the GraphPad Prism 7 and SPSS software. Results. Gene expression from The Cancer Genome Atlas dataset was
used to perform the WGCNA analysis, and candidate prognostic-related genes in patients with ovarian cancer were identified.
According to the Cox regression analysis, the prognostic signature was constructed, which divided patients into two groups. The
high-risk group showed the least favorable prognosis. Three independent cohorts from the Gene Expression Omnibus (GEO)
database were used for the validation studies. According to the immune analyses, the GEO database signatures were significantly
correlated with the immune statuses of ovarian cancer patients. By analyzing the combination of the prognostic signature and
total mutational burden (TMB), ovarian cancer patients were divided into four groups. In these groups, memory B cell, resting
memory CD4 T cell, M2 macrophage, resting mast cell, and neutrophil were found with significant distinctions among these
groups. Conclusions. This novel signature predicted the prognosis of ovarian cancer patients precisely and independently and
showed significant correlations with immune responses. Therefore, this prognostic signature could indicate targeted
immunotherapies for ovarian cancer patients.

1. Background

Ovarian cancer is one of the most common and lethal gyne-
cologic tumors. Early detection of ovarian cancer is difficult
because ovaries are located deep within the pelvic cavity
and are small, and there is a lack of obvious symptoms. Cur-
rent studies have shown that the tumor microenvironment
has a dominant role in cancer progression, especially in
regard to the immune cell microenvironment [1]. Ovarian
cancer genes have high mutational rates closely correlated
with immune status disorders, which further promote tumor
progression [2].

In tumor-related research, many scientists have looked
for differentially expressed genes (DEGs) between tumor
and normal tissues, but correlations among the genes have
been ignored. The weighted gene coexpression network anal-
ysis (WGCNA) is an algorithm that uses R packages in R
software to build a scale-free network for the exploration of
weighted correlations among gene clusters and phenotype-
related modules [3, 4]. Related genes and hub genes can be
identified to find candidate biomarkers or therapeutic
targets. WGCNA identifies distinct aspects of coexpression
networks and various biologic processes, particularly in
cancer patients [5].
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Recently, studies showed that immune responses have
close relationships with ovarian cancer progression [6]. At
present, some preclinical trials targeting immune cells in
the ovarian cancer microenvironment have been performed.
Programmed cell death protein 1 (PD-1) is an important
immunosuppressive protein expressed on T cells. Liu et al.
reported that the combination of PD-1 immune checkpoint
inhibitors, nivolumab and bevacizumab, showed greater
activity in relapsed platinum-sensitive ovarian cancer
patients than when using either inhibitor alone [7]. Signal
regulatory protein α (SIRPα) works as an immunosuppres-
sive receptor on macrophages and, when combined with
the CD47 ligand on cancer cells, sends out a “don’t eat me”
signal, inhibiting the phagocytic activity of macrophages.
Huang et al. reported that the oncolytic adenovirus carrying
the SIRPα-IgG1 Fc fusion gene could block CD47 signaling
in ovarian cancer cells, therefore, increasing macrophage
infiltration and killing ovarian cancer cells [8]. In addition,
the total mutational burden (TMB) was also correlated with
cancer prognoses and affected immune responses in the
tumor microenvironment [9].

In this study, we developed a novel prognostic signature
based on WGCNA, which divided patients into two groups
according to large-scale expression datasets. In this study,
due to the close relationship between the prognostic signa-
ture and immune microenvironments in ovarian cancer
patients, we investigated the potential roles that immune cells
play in ovarian cancer microenvironments according to the
identified signature.

2. Results

2.1. Construction of the Ovarian Cancer Coexpression
Modules. The WGCNA package in R language was used to
perform the clustering analyses of ovarian cancer samples
from TCGA dataset shown in Figure S1(a). Of the 537
samples, 525 revealed no significant differences in the
clustering analysis. The corresponding clinical parameters
are shown in Figure S1(b). The power value, representing
the most critical parameter, was screened out to form a
scale-free network, which influenced the scale independence
and mean connectivity of the coexpression module. In our
study, we set β = 3 (scale − free = 0:94) as the power value
with a scale independence of up to 0.9, and higher mean
connectivity (Figure S2). Subsequently, β = 3 was used to
construct the coexpression modules, of which nine different
ovarian cancer modules were identified (including a grey
module) (Table S1). Genes with similar expression patterns
were placed in one module using average linkage clustering,
and the first 25% most variant genes were used from the 525
samples (Figure 1(a)). Figure 1(b) shows the correlation
between the coexpression modules and clinical traits. As is
commonly understood, clinical stage, clinical grade, and the
presence of lymphatic invasion correlate with ovarian cancer
prognoses. For this study, we chose modules with gene
numbers >200 and p values < 0.001 to study further.
Therefore, we selected turquoise modules, which showed the
most relevance with ovarian cancer lymphatic invasion and
blue modules, which showed the most relevance with

ovarian cancer stages (Figure 1(c)). In addition, gene
significance plots vs. module memberships are shown in
Figure 1(d). From the blue and turquoise modules, 1648
genes were further analyzed using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses, as shown in Tables S2-S5. Notably, the biologic
pathway analysis showed that these genes significantly
correlated with immune responses, indicating that immune
responses participate in ovarian cancer progression and
prognoses (Figure S3).

2.2. Identification of a Novel Ovarian Cancer Prognostic
Signature. A univariate Cox regression analysis was used
to investigate the prognostic role of the1648 candidate
genes from turquoise and blue modules. The top 15 genes
with a p value of < 0.001 were used for further analyses
(Table 1). In addition to the univariate Cox regression
analysis, the Kaplan-Meier method was used to predict
overall survival (OS) of the 15 candidate genes. The results
showed that all of the genes were significantly correlated
with ovarian cancer prognoses and were consistent with the
results of the univariate cox regression analyses (Figure S4).
Next, the multivariate Cox regression analyses were used to
construct prognostic signatures, and 4 genes were chosen
using the following equation: Risk score = ð0:11483 × CH25H
expressionÞ + ð0:22472 × HSPB7 expressionÞ – ð0:28916 ×
LOC158830 expressionÞ + ð0:21726 × PPM2C expressionÞ.

According to the signature risk scores, patients were
divided into two groups, namely high-risk and low-risk
groups. By investigating the prognostic value of the signa-
tures, the high-risk group was found to have shorter survival
times than the low-risk group (Figure 2(a), p < 0:001). Strat-
ified survival analyses showed that the prognostic signature
significantly correlated with OS in ovarian cancer patients
according to the clinical parameters (Figure S5). These
analyses indicated that the signatures could precisely
predict prognoses and did not need the clinical parameter
information. Moreover, to investigate the accuracy of the
identified signature, a 3-year receiver operating characteristic
(ROC) curve analysis was performed. The ROC of the
signature was 0.683, which was significantly higher than that
of the prognostic-related clinical parameters (Figure 2(b)).
Clinically, the CA-125 gene was found to be a highly
sensitive biomarker for ovarian cancer diagnoses. However,
the ROC of the CA-125 gene was 0.572, which was
significantly lower than that of the signature (Figure 2(c)). A
nomogram was constructed to predict the clinical survival of
ovarian cancer patients by combining the signature with
other clinical parameters (Figure 2(d)). The signature risk
score was found to be closely correlated with the successful
outcomes of primary therapies (Figure 2(e)). Through the
examination of venous invasion, tumor residual disease, and
clinical stages in ovarian cancer patients, the signature could
precisely predict ovarian cancer prognoses.

In Table 2, the univariate and multivariate Cox regression
analysis was used to test whether this signature could act as
an independent prognostic factor for ovarian cancer. The
results showed that it could act as an independent factor
when adjusted for age, stage, grade, tumor residual disease,
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Figure 1: Continued.
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and lymphatic and venous invasion. To clarify the relation-
ship between the signature and clinical parameters, the
samples were divided into two groups. The signature was
found to be significantly correlated with the clinical stage,
residual tumor size, venous invasion, therapeutic outcome,
and patient cancer status (Table 3).

To investigate the distinct biologic features between the
high-risk and low-risk groups, DEGs with a fold change of
>1.5 and a p value of < 0.05 were chosen (Table S6). Using
the DAVID Gene Functional Classification software, we
analyzed 170 candidate genes. The results indicated that
the biologic process (BP) enrichments were significantly
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Figure 1: Coexpression module construction of ovarian cancer data arrays of TCGA dataset. (a) Clustering dendrograms of the top 25%
variant genes based on a dissimilarity measure (1-TOM). (b) A heatmap of the correlations between module eigengenes and ovarian
cancer clinical traits. The row represents distinct eigengene modules, and the column represents distinct clinical traits. The corresponding
correlation and p value are shown in each cell. The table is color-coded by correlation according to the color legend. (c) Bar graphs
showing the distribution of the average gene significance and error in the modules associated with ovarian cancer progression. The left
graph shows the association between modules and ovarian cancer lymphatic invasion, and the right graph shows the association between
modules and ovarian cancer stages. (d) Scatter plots of gene significance (GS) for lymphatic invasion or clinical stage vs. module
membership (MM) in the turquoise or blue modules using linear regression.
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correlated with immune responses (Figure S6). The results
showed that the identified prognostic signature might be
closely related to ovarian cancer patient immune responses,
thus, providing potential immunotherapy for these patients.

2.3. Validation of the Prognostic Signature with Independent
Cohorts of Ovarian Cancer. To validate the signature of
the ovarian cancer datasets derived from The Cancer
Genome Atlas (TCGA) dataset, we downloaded GSE26193,
GSE63885, and GSE18520 from the GEO database to repre-
sent three independent cohorts. According to the signature
risk scores, the patients were divided into two groups. In
these three datasets, patients with higher risk scores showed
worse prognoses as expressed by shorter OS times than
patients with lower risk scores (Figure 3). According to the
Cox regression analysis of the GSE26193 dataset, this signa-
ture was an independent prognostic factor for ovarian cancer
(Table S7).

In Table S8, we analyzed the relationship between the
signature and the clinical parameters. However, in the
GSE26193 and GSE63885 datasets, no clinical parameters
were found that correlated with the signature, which could
have been due to the limited number of samples in these
two datasets.

2.4. The Prognostic Signature Correlates with Immune Cell
Expression in the Ovarian Cancer Microenvironment. Tumor
microenvironments play an important role in regulating
ovarian cancer progression. According to the above analyses,
we found that the prognostic signature might have a close
relationship with the immune responses of ovarian cancer
patients. In Figure 4(a), we showed that stromal cell expres-
sion in the tumor microenvironment correlated with ovarian
cancer prognoses. The Pearson correlation analysis showed

that the signature was positively correlated with stromal
scores, estimation of stromal and immune cells in malignant
tumor tissues using expression data (ESTIMATE) scores, and
neutrophil and resting mast cell expression with an R > 0:2
(Figure 4(b)). According to the signature risk score, the sam-
ples were divided into two groups. The relationship between
immune cells and the signature were tested, and the results
are shown in the bar charts of Figure 4(c). These two
methods showed similar results, which proved that the sig-
nature correlated significantly with stromal score expres-
sion, ESTIMATE scores, and neutrophils and resting
mast cell expression. In addition, we selected a few immune
checkpoint-related genes to further investigate the signature
relationships (Figure 4(d)). The results showed some
immune-related genes, such as LGALS3, PDCD1, IL6, IL6ST,
CD163, FCGR2B, MSR1, HAVCR2, ICOS, IL10, and CCL2,
were significantly correlated with the signature.

2.5. The Correlation between the Signature and the Immune
Status of Ovarian Cancer Patients. The immune status of
patients is well-known to play an important role in cancer
progression. Yue et al. showed that some clinical parameters
of ovarian cancer correlated with the expressions of some
immune cells, such as grade of ovarian cancer with M1 mac-
rophages and activated NK cells [10]. In addition, the expres-
sion of M0 and M1 macrophages also correlated with the
overall survival of ovarian cancer patients [11]. Therefore,
macrophages might play an important role in ovarian cancer
progression.

Recently, TMB has been found to be an important factor
in cancer progression and immunity with increasing atten-
tion. Bi et al. showed that the gene mutation in ovarian can-
cer is very high [12]. In addition, study showed that ovarian
cancer patients with higher TMB showed better overall sur-
vival [12]. According to TCGA gene mutations, we analyzed
correlations among the top 20 mutational genes and the sig-
nature and found that no significant correlations existed
(Table S9). Therefore, we could classify ovarian cancer
patient statuses more specifically. Next, we performed a
combined analysis of the signature with TMB expression in
ovarian cancer patients. The OS of ovarian cancer patients
with higher risk scores and lower TMB expression had the
worst prognoses (Figure 5(a)). Moreover, the relationship
of the signature or TMB expression with immune cells
showed that the signature was significantly correlated with
the expression of resting memory CD4 T cells, activated
memory CD4 T cells, M0 macrophages, M2 macrophages,
resting mast cells, activated mast cells, and neutrophils
(Figure 5(b)). However, study showed that the expression
of TMB also correlated with the expression of some kinds
of immune cells in ovarian cancer patients, such as B cells
naïve, B cells memory, T cells CD4 memory resting, T cells
CD4 memory activated, T cells follicular helper, T cells
regulatory, monocytes, macrophages M1, mast cells resting,
and neutrophils [12]. Overall, these results demonstrated
that the effects of the signature and TMB expression on
immune cells were very different. Therefore, we combined
the signature and TMB expression and found that memory
B cells, resting memory CD4 T cells, M2 macrophages,

Table 1: Top 15 genes significantly correlated with the overall
survival of ovarian cancer patients.

Gene name HR p value

HSPB7 1.303 5:34 × 10−5

PPM2C 1.284 6:68 × 10−5

ZFHX4 1.216 8:69 × 10−5

ADH1B 1.223 9:77 × 10−5

CH25H 1.180 0.000164

GFPT2 1.257 0.000232

OGN 1.124 0.000257

SUSD5 1.218 0.000262

CCDC80 1.202 0.000311

ZNF521 1.129 0.000314

PHLDB2 1.226 0.000361

PTGER3 1.242 0.000538

C1QTNF7 1.209 0.000571

LOC158830 0.799 0.000641

PTGIS 1.137 0.000648
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resting mast cells, and neutrophils were closely correlated
(Figure 5(c)). The expression of resting memory CD4 T
cells, M2 macrophages, and neutrophils was positively
correlated with the status of signatures combined with
TMB expression in ovarian cancer patients.

3. Discussion

As a progressive disease, ovarian cancer needs reliable bio-
markers to predict the prognosis and therapeutic targets.
Currently, big data analyses are being used as a method to
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Figure 2: Identification of a prognostic signature in ovarian cancer patients. (a) The high-risk group showed unfavorable overall survival (OS)
for ovarian cancer patients using the Kaplan-Meier method. (b) The receiver operating curve (ROC) 3-year OS analysis looking at the
signature with other clinical factors using survival ROC in R package. (c) The ROC 3-year OS analysis looking at the signature with the
CA-125 gene using survival ROC in R package. (d) A prognostic nomogram of ovarian cancer patients combined the signature and
clinical parameters. (e) Correlations between the signature and clinical factors of ovarian cancer patients using one-way ANOVA.

Table 2: The univariate and multivariate Cox regression analysis of the signature with clinical characteristics predictive of overall survival in
ovarian cancer in TCGA cohort.

Variable
Overall survival

Univariate Multivariate
HR p value HR p value

Signature (low-risk vs. high-risk) 0.438 <0.001 0.575 <0.001
Lymphatic invasion (invasion vs. noninvasion) 1.422 0.114

Grade (G3-G4 vs. G1-G2) 1.181 0.054

Clinical stage (stage III-IV vs. stage I-II) 1.660 0.003 1.602 0.026

Tumor residual disease (visible macroscopic vs. no macroscopic) 2.295 <0.001 1.775 0.006

Venous invasion (noninvasion vs. invasion) 0.971 0.910

Age (old age vs. young age) 1.342 0.015 1.286 0.050
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Table 3: Relationship of clinical characteristics of ovarian cancer patients and signature in TCGA cohort.

Characteristics High-risk (n = 266) Low-risk (n = 266) p value

Age 0.528

Mean (years) 59:27 ± 0:72 59:91 ± 0:71
Stage 0.033

I 4 11

II 9 16

III 202 208

IV 48 30

NA 3 1

Grade 0.123

G1 5 1

G2 40 27

G3 214 232

G4 0 1

NA 7 5

Residual tumor size <0.001
No macroscopic 36 70

1-10mm 134 100

11-20mm 20 14

>20mm 55 45

NA 21 37

Lymphatic invasion 0.067

Yes 75 57

No 31 47

NA 160 163

Venous invasion 0.003

Yes 52 34

No 22 45

NA 192 187

KPS 0.058

40 0 2

60 7 8

80 13 27

100 2 5

NA 244 224

Therapy outcome 0.006

Complete remission/response 133 165

Partial remission/response 40 20

Progressive disease 24 12

Sable disease 14 16

NA 55 53

Neoplasm cancer status 0.002

With tumor 184 150

Tumor free 50 85

NA 32 31

New neoplasm event type 0.081

Locoregional disease 5 1

Metastatic 1 0

Progression of disease 12 15

Recurrence 143 121

NA 105 129
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Figure 3: Validation of the prognostic signature with independent cohorts. (a) The high-risk group showed an unfavorable overall survival
(OS) of ovarian cancer patients in the GSE26193 dataset using the Kaplan-Meier method. (b) In the GSE26193 dataset, the patients have been
divided into two groups according to the risk scores. Compared with the low-risk group, the high-risk group showed an unfavorable
progression-free survival of the ovarian cancer patients in the GSE26193 dataset using the Kaplan-Meier method. (c) In the GSE63885
dataset, the patients have been divided into two groups according to the risk scores. Compared with the low-risk groups, the high-risk
group showed an unfavorable OS of the ovarian cancer patients in the GSE63885 dataset using the Kaplan-Meier method. (d) The high-
risk group showed an unfavorable OS of ovarian cancer patients in the GSE18520 dataset using the Kaplan-Meier method.
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Figure 4: The correlation between the prognostic signature and immune cells of the tumor microenvironment in ovarian cancer data
samples. (a) The Kaplan-Meier curves for overall survival of stromal cells, immune cells, and the estimation of stromal and immune
cells in malignant tumor tissues using expression data (ESTIMATE) in ovarian cancer patients. (b) Pearson’s correlation analyses
between the signature and the immune cells. (c) Column plots show the correlation between the signature and the expression of
immune cells. (d) A heatmap of the signature with immune-related genes using pheatmap in the R package. ∗p < 0:05; ∗∗p < 0:01;
∗∗∗ p < 0:001; ∗∗∗ ∗p < 0:0001.
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Figure 5: Continued.

13BioMed Research International



analyze cancer progression. The WGCNA algorithm is being
used to analyze multivariate and highly complex data aside
from other methods for the following reasons. First, the
WGCNA algorithm focuses on coexpression rather than
the expression of modules, and genes can be clustered into
separate modules [13]. This algorithm has been used to study
the relationships between modules and clinical traits with
high reliability from large and multidimensional datasets
[14]. In our study, the ovarian cancer samples from TCGA
dataset were used to investigate candidate prognostic-
related genes via the WGCNA algorithm. Ovarian cancer
patients are almost always diagnosed in the late stages of dis-
ease due to the anatomic location of the ovaries. The clinical
stage, clinical grade, and the presence of lymphatic invasion
significantly correlated with ovarian cancer prognoses.
Therefore, according to the screening criteria, the turquoise
and blue modules were viewed as the modules correlated
with ovarian cancer prognoses.

Next, the Cox regression analyses were used to construct
the signature that predicted the ovarian cancer progno-
ses. Cholesterol 25-hydroxylase (CH25H) correlated with
immune responses and cells. Li et al. reported that CH25H
and Liver X Receptor (LXR) stimulated by Krüppel-Like
Factor 4 (KLF4) inhibited inflammation primarily through
a decrease in inflammasome activity and promoted the repo-
larization of M1 to M2 macrophages [15]. HSPB7, a member
of the heat-shock protein family, has been shown to function
mainly in cardiac disease regulation; however, studies regard-
ing its ability to regulate tumor progression are very limited.

PPM2C, also known as pyruvate dehydrogenase phosphatase
catalytic subunit 1 (PDP1), works primarily as an activator of
Pyruvate Dehydrogenase E1 Subunit Alpha 1 (PDHA1) and
Pyruvate Dehydrogenase Complex (PDC). Chen et al.
reported that PDP1 was amplified and overexpressed in pros-
tate tumors, promoting PDC control of lipid biosynthesis,
further promoting prostate tumor progression [16]. How-
ever, no research has focused on studying LOC158830, also
known as the CXorf65 gene. Our study used the Kaplan-
Meier method and univariate Cox regression analysis to
show that CH25H, HSPB7, and PPM2C correlated with
ovarian cancer patients that had the worst prognoses. We
also found that LOC158830 correlated ovarian cancer
patients that had a better prognosis. We combined these four
genes to construct a prognostic signature for ovarian cancer
patients, which was validated by three independent cohorts.
Thus, the results indicated that the signature could precisely
predict ovarian cancer patient prognoses.

Immune cells have been shown to have a marked impact
on cancer progression. To date, immunotherapies in ovarian
cancer are still in the exploratory stages. However, an
increasing number of in vitro and in vivo clinical immuno-
therapies have been investigated. Higuchi et al. reported that
combined CTLA-4 antibody and PARP inhibitor therapy in
BRCA1-deficient ovarian cancer patients significantly pro-
longed survival mediated by T cells [17]. In our study, we
were first to find candidate genes and DEGs in high-risk vs.
low-risk groups that significantly correlated with immune
responses, which were confirmed with GO analyses. In
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Figure 5: The correlation between signature and immune status in ovarian cancer patients. (a) The Kaplan-Meier curve showing OS after
combining the signature with TMB expression. (b) The relationship between immune cells and the signature on a string map showed that
the signature significantly correlated with the expression of T cells CD4 memory resting, T cells CD4 memory activated, M0 macrophages,
M2 macrophages, mast cells resting, mast cells activated, and neutrophils. (c) The relationship between immune cells and signature
combined with TMB expression on a string map showed that this combination significantly correlated with the expression of B cells
memory, CD4 memory resting, M2 macrophages, mast cells resting, and neutrophils.
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addition, we found that our prognostic signature significantly
correlated with the expression of various immune cells. IL10,
IL6, IL6ST, and macrophage scavenger receptor 1 (MSR1;
CD204) were positively correlated with ovarian cancer
patients in the high-risk group using heatmap analyses of
the signature with the immune-related genes. Among these
molecules, IL10 works as a specific M2 macrophage marker.
Miyasato et al. reported that macrophages with higher
CD204 expression predicted worse prognoses in breast can-
cer patients [18]. Through peritoneal lavage component
analyses of ovarian cancer, IL6 acted as an independent prog-
nostic factor and correlated with the worst ovarian cancer
prognoses[19]. The results of this research are consistent
with that of our research.

Recent studies showed TMB did not only influence can-
cer prognoses, but higher expression of TMB also correlated
with successful chemotherapy outcomes [20]. We also found
that TMB expression correlated with ovarian cancer progno-
ses, although both the signature and TMB had a close
relationship with prognoses and immune cell expression.
However, since the relevance of TMB and our prognostic sig-
nature is unknown, we analyzed the combination of these
two parameters with survival and immunity. The results
showed that the combined analysis could more accurately
demonstrate a patient’s gene expression profile. The overall
survival analysis showed that ovarian cancer patients with
low TMB expression and high-risk signature scores had sta-
tistically worse prognoses compared with patients with high
TMB expression and low-risk signature scores. In addition,
resting memory CD4 T cells, M2 macrophages, and neutro-
phils were positively correlated with combined signature
and TMB status. Other studies have shown that M2 macro-
phages and neutrophils promoted tumor progression in
tumor microenvironments [21, 22]. Therefore, targeting
these immune cells or inhibiting their expression might pro-
vide insights into ovarian cancer chemotherapies.

4. Methods

4.1. WGCNA Analysis. The RNA expression data and corre-
sponding clinical information from TCGA database and
GEO database were downloaded. The WGCNA package in
R language was applied to evaluate the gene expression level
and to test if they were good samples or good genes. More-
over, the flashClust package in the R language (http://www
.r-project.org/) was used to conduct the clustering analysis
of these samples. The power value in the module was sorted
through the WGCNA algorithm. The independence and
average degree of connectivity of various modules were iden-
tified with distinct power values via the gradient method. The
best power value was determined when the independence
degree was 0.9.

Pearson’s correlation matrices were used to compare
pair-wise genes. Using the power function amn = ∣cmn ∣ β
ðcmn = Pearson’s correlation between gene m and gene n ;
amn = adjacency between genem and gene nÞ, we constructed
a weighted adjacency matrix. As a soft-thresholding parame-
ter, β stresses the strong correlation between genes. After
determining the appropriate power value, the genetic modules

were constructed using the WGCNA algorithm with at least
50 genes in each module to regulate reliability, and the
information of the corresponding genes in each module was
extracted. Pearson’s correlation matrices were used to
compare pair-wise genes. Using the power function amn =
∣cmn ∣ β ðcmn = Pearson’s correlation between gene m and
gene n ; amn = adjacency between genem and gene nÞ, we con-
structed a weighted adjacency matrix. As a soft-thresholding
parameter, β stresses the strong correlation between genes.
After determining the appropriate power value, the genetic
modules were constructed using the WGCNA algorithm with
at least 50 genes in each module to regulate reliability, and the
information of the corresponding genes in each module was
extracted. The relationship between the module eigengenes
(MEs) and clinical traits was identified in the module-trait
relationships, which identified the relevant module for the
clinical phenotype. Moreover, gene significance (GS), defined
as the log10 transformation of the p value, was calculated
for the specific clinical trait to evaluate the relationship
between gene expression and the clinical traits using linear
regression[23].

4.2. Bioinformatics Analysis. As an online program to analyze
the functional annotation of the corresponding genes,
DAVID (Database for Annotation, Visualization, and Inte-
grated Discovery, http://david.abcc.ncifcrf.gov/) was used to
conduct the Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) enrichment analyses. A
heatmap of the signature with immune-related genes was
analyzed using pheatmap in R package.

4.3. Statistical Analysis. The univariate Cox regression analy-
sis was used to identify the candidate prognostic genes for
ovarian carcinoma. The multivariate Cox regression analysis
was performed to assess the signature with Akaike’s informa-
tion criterion (AIC) based on the candidate genes. Patients
were divided into two groups according to the signature risk
scores. The OS analysis was performed using the Kaplan-
Meier method and compared with the log-rank test. The
Pearson analysis was used to predict the correlation between
the signature and the immune cells. A nomogram was con-
structed to predict patient prognoses for ovarian cancer
patients based on the Cox regression model. One-way
ANOVA was performed to evaluate the relationship between
clinical parameters and relative expression levels. A ROC
curve was prepared using the R package, survivalROC, to
evaluate the signature’s effect in ovarian cancer cases. The
relationship between gene expression and the clinicopatho-
logic characteristics was determined using the chi-square test
or Fisher’s exact test. The SPSS 18.0 (SPSS Inc., Chicago, IL,
USA) and GraphPad Prism 7.0 (GraphPad Software, La Jolla,
CA, USA) software were used for the statistical analyses. A p
value < 0.05 was considered significant.

5. Conclusions

In summary, we investigated a novel prognostic signature
that not only correlated with ovarian cancer prognoses but
also correlated with the immune status of these cancer
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patients. Although our study still had the limitation of being
retrospective, this prognostic signature could be used as a
clinical tool to predict ovarian cancer patient prognoses and
provide guidance for deciding on immunotherapy in ovarian
cancer patients.

Data Availability

The data that support the findings of this study are available
from the corresponding author upon reasonable request.

Consent

All authors agreed to the publication.

Conflicts of Interest

The authors have declared that no competing interest exists.

Authors’ Contributions

Qing Yang designed the article. Yuanyuan An wrote the
manuscript. All the figures were prepared by Yuanyuan An
and revised by Qing Yang.

Acknowledgments

This study was supported by grants from the National
Natural Science Foundation of China (81402130).

Supplementary Materials

Figure S1: identification of clustering in ovarian cancer
samples. (a) Sample clustering of TCGA samples to detect
outliers. (b) A sample dendrogram and trait indicator. The
clustering was based on the gene expression data. The color
intensity was proportional to higher clinical stages and
grades. For lymphatic invasion, white indicates no lymphatic
invasion, and red indicates lymphatic invasion. Figure S2: the
determination of a soft-thresholding power in weighted gene
coexpression network analysis (WGCNA). (a) Screening for
the appropriate soft-thresholding power in WGCNA. An
analysis of the scale-free fit index for various soft-
thresholding powers (β). An analysis of the mean connectiv-
ity for various soft-thresholding powers. (b) A histogram of
the connectivity distribution when β = 3. Scale-free topology
when β = 3. Figure S3: Gene Ontology enrichment analysis
and KEGG pathway enrichment analysis of genes in the
turquoise and blue modules. The size of the balls represents
the p value of each term, the smaller the p value, the bigger
the size. Y-axis represents the number of related genes. (a)
Biological process enrichment. (b) Molecular function
enrichment. (c) Cellular component enrichment. (d) KEGG
pathway enrichment. Figure S4: the Kaplan-Meier curve for
overall survival of candidate genes in ovarian cancer. (a)
HSPB7, (b) PPM2C, (c) ZFHX4, (d) ADH1B, (e) CH25H,
(f) GFPT2, (g) OGN, (h) SUSD5, (i) CCDC80. (j) ZNF521,
(k) PHLDB2, (l) PTGER3, (m) C1QTNF7, (n) LOC158830,
and (o) PTGIS. Figure S5: the overall survival of the
signature in the cohorts stratified by grades, ages, and

residual tumor sizes. (a) Low grade (G1-G2) of ovarian
cancer patients. (b) High grade (G3-G4) of ovarian cancer
patients. (c) Young age of ovarian cancer patients. (d) Old
age of ovarian cancer patients. (e) No macroscopic of
residual tumor size in ovarian cancer patients. (f) 1-10mm
of residual tumor size in ovarian cancer patients. (g) 11-
20mm of residual tumor size in ovarian cancer patients. (h)
>20mm residual tumor size in ovarian cancer patients.
Figure S6: Gene Ontology (GO) enrichment analysis and
Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analyses of differently expressed genes
in the signature. The size of the balls represents the number
of related genes. The color of the balls represents the p
value of each term; the red color indicates the smallest p
value. (a) Biological process enrichment. (b) Cellular
component enrichment. (c) Molecular function enrichment.
(d) KEGG pathway enrichment. Table S1: the details of
separate modules. Table S2: the main biological process in
the genes from blue and turquoise modules. Table S3: the
main cellular component in the genes from blue and
turquoise modules. Table S4: the main molecular function
in the genes from blue and turquoise modules. Table S5:
the main KEGG pathway in the genes from blue and
turquoise modules. Table S6: the DEGs between high-risk
group and low-risk group. Table S7: the univariate and
multivariate Cox regression analysis of signature and
clinical characteristics predictive of overall survival in
validation cohorts. Table S8: clinical characteristics of
ovarian cancer patients by signature in validation cohorts.
Table S9: gene mutation status in ovarian cancer according
to the signature divided by risk score. (Supplementary
Materials)
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