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Successful prediction of miRNA-disease association is nontrivial for the diagnosis and prognosis of genetic diseases. There are
many methods to predict miRNA and disease, but biological data are numerous and complex, and they often exist in the form
of network. How to accurately use the features of miRNA and disease-related biological networks to predict unknown
association has always been a challenge. Here, we propose PmDNE, a method based on network embedding and network
similarity analysis, to predict the miRNA-disease association. In PmDNE, the structure of network bipartite graph is improved,
and a random walk generator is designed. For embedded vectors, 128 dimensions are used, and the accuracy of prediction is
significantly improved. Compared with other network embedding methods, PmDNE is comparable and competitive with the
state of art methods. Our method can solve the problem of feature extraction, reduce the dimension of features, and improve
the efficiency of miRNA-disease association prediction. This method can also be extended to other area for biomedical network
prediction.

1. Introduction

microRNA (miRNA) is a kind of noncoding RNA with
length of around 22 nucleotides. It has been found in plants,
animals, and viruses. Recent studies have shown that micro-
RNAs play an important role in different biological processes
[1]. It is able to prevent tumor invasion, control cell growth,
regulate cell cycle regulation, and so on. Studies have also
shown that many miRNAs are involved in human diseases
[2], such as cancer, viral diseases, and immune-related dis-
eases [3–5]. Therefore, successful prediction of disease-
related miRNAs is nontrivial for the diagnosis and prognosis
of genetic diseases and drug development.

How to predict human miRNA in the relationship and
make good use of the existing miRNA disease association
data is an important topic in the study of human diseases.
For biomedicine, the accuracy of data is very important.
There are many public databases related to miRNAs such
as mir2disease [6], miRBase [7], and TarBase [8]. With the
increasing concern of the scientific community on the rela-
tionship between diseases and miRNAs, their data are also

included. For instance, HMDD [9] is the miRNA human dis-
ease association database established in 2007.

There are two kinds of major methods to predict disease-
miRNA association. The first method is based on traditional
network iteration, and the second one is based on machine
learning.

In the traditional iterative method, the miRNAs and the
nodes in the disease network are iterated, and the possible
relationship is found from high to low through the final con-
vergence result ranking. In 2016, Chen et al. suggested that
global network similarity can capture the association between
disease and miRNA more effectively than traditional local
network similarity. Therefore, RWRMDA [10] method was
developed to predict potential miRNA-disease associations.
Chen et al. also proposed a computational model of
HGIMDA [11], which integrates the known miRNA disease
association, different types of disease similarity, and miRNA
similarity into the heterograph to predict new disease-related
miRNAs. However, the method of using network has its own
disadvantages. It may be biased towards the well-known
miRNAs and diseases. In the network method, restarting
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random walk is very time-consuming and parameters with
transition probability; different selection of parameters also
affects the final results. The experimental results of this kind
of method highly depend on the reliable biological network
model and cannot be applied to new miRNAs or new
diseases.

The second kind of method is based on machine learn-
ing. This kind of method is able to solve the problem of
new miRNAs and disease relation prediction. In 2011,
Xu introduced a method [12] based on miRNA target
imbalance network (MTDN) to give priority to new
disease-related miRNAs. A weighted KNN-based HDMP
[13] method is proposed by Xuan et al. In addition, the
semantic similarity and phenotypic similarity of diseases
are used to calculate the functional similarity matrix of
miRNA. Chen proposed a semisupervised learning
RLSMDA [14] model to predict potential disease-related
miRNAs in 2014. RLSMDA [14] can calculate miRNA dis-
ease association prediction score of new diseases. This
kind of method needs to solve two major problems: fea-
ture extraction and negative case missing.

Recently, people pay more and more attention to the net-
work embedding method [15, 16]. It extracts features by
extracting some relations of complex data and embeds the
high latitude features of complex data into low dimensional
space. In order to better predict the relationship between dis-
ease and miRNA, the network embedding method can be
used to solve the problem of feature extraction. Therefore,
we propose a method based on network embedding and net-
work similarity analysis called PmDNE to predict the
miRNA-disease association. In PmDNE, the structure of net-
work bipartite graph is improved, and a random walk gener-
ator is designed. The accuracy of prediction has improved.
Compared with other network embeddingmethods, PmDNE
is comparable and competitive with the state of art methods.
Our method can solve the problem of feature extraction,
reduce the dimension of features, and improve the efficiency
of miRNA-disease association prediction. This method can
also be extended to other area for biomedical network
prediction.

2. Materials and Methods

2.1. miRNA Disease Association Data. miRNA disease asso-
ciation data is obtained from the database HMDD3.0
(http://www.cuilab.cn/hmdde). In order to predict the
effect effectively, we use the latest version of HMDD3.0.
Some other databases, such as mri2disease, are not up to
date. Some databases do not focus on the relationship
between miRNA and disease, so we chose HMDD. A total
of 894 disease nodes and 1208 miRNA nodes are obtained
from the HMDD database, and 18733 diseases and
miRNA association relationships are obtained as shown
in Tables 1 and 2.

2.2. Disease Similarity Data about the Disease Similarity
Network. We construct a directed acyclic graph (DAG) to
describe the disease according to the literature [17] of
Wang et al. Based on the medical subject title descriptor,

it can be downloaded from the national medical library
(http://www.nlm.nih.gov/). A total of 414003 related dis-
ease similarity relationships were obtained as shown in
Table 2.

2.3. miRNA Similarity Data. miRNA similarity network is
based on the method of calculating miRNA functional simi-
larity proposed by Wang et al. [17]. The functional similarity
of 495 miRNA nodes was obtained by downloading miRNA
function similarity data conveniently.

2.4. Isomorphic Network Construction and Binetwork
Construction.When constructing miRNA-disease binetwork,
if there is correlation, the weight of their edges is 1, and the
weight of nonexistent edges is 0. In this way, we can trans-
form the prediction method into a binary classification prob-
lem. For isomorphic network, the weight of similarity data is
set as the weight of isomorphic network.

2.5. The First Similarity Obtains the Node Embedding Vector
of Graph Representation Learning. In order to better recon-
struct the original network in the low dimensional space after
embedding, the first similarity relation is represented by the
existing edge learning, and the second similarity relationship
is represented by the edge learning with transitive relation-
ship. The final node representation is learned by combining
the two methods. The modelling of explicit relationship is
the same as the first similarity of Line [18]. By considering
local similarity, the compactness of two connected nodes is
defined as Equation (1).

i, jð Þ = Wij

∑eij ∈ Ewij
, ð1Þ

wherewij is the edge eij’s weight. The denominator is the sum
of the weights of all edges. If two nodes are linked together,
the probability of two nodes appearing together after embed-
ding is very high.

Many research works [19, 20] have achieved good
results on measuring the similarity of two nodes embed-
ded in the space. Most of them refer to the idea of taking
vector inner product of word2vec [21]. Herein, we also use
this method to define the possibility of two nodes adjacent

Table 1: Number of edges about miRNA and disease, miRNA and
miRNA, and disease and disease.

miRNA Disease

miRNA 644918 18733

Disease 18733 414003

Table 2: The number of miRNA nodes and disease node.

Nodes number

miRNA 1208

Disease 894
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to each other in the embedded space as Equation (2).

bP i, jð Þ = 1

1 + exp −U
*

i

T
V
*

j

� � , ð2Þ

where uivj is the embedded node vector. Embedding vector
means minimizing the difference between two nodes. That
is, the closer the original node is, the closer the embedded
node is still the closest relationship. To minimize the dif-
ference of the possibility of appearing together before
and after embedding, KL divergence is used.

Minimize O1 = KL P ∣ P̂
��� �

= 〠
ei j∈E

P i, jð Þ log P i, jð Þ
P̂ I, Jð Þ

� �

=∝−〠
eij∈E

wij log P̂ i, jð Þ:
ð3Þ

The equation above represents that the closer the dis-
tance between the two nodes before and after embedding,
the smaller the KL divergence is, the more similar the two
distributions are. The local information of the original net-
work is retained through the first similarity relationship.
In other words, for two closely connected nodes, the rep-
resentation of the two nodes learned in this way is also
close to each other in the low dimensional vector space.

2.6. The Second Similarity Obtains the Node Embedding
Vector of Graph Representation Learning. We model the sec-
ond similarity relationship and extract the feature vector by
DeepWalk [20]. But the feature vectors embedded by the ran-

dom walk of DeepWalk are all based on the same type of
nodes. Therefore, we embed the nodes based on such a the-
ory. Although there are no directly connected edges between
two nodes of the same type, if there is a path from ui to uj, it
can be considered that there is a relationship between the two
nodes. If two nodes of the same type are connected to the
same node, they can be considered as having links. In
PmDNE, we need to split a bipartite graph into two homoge-
neous networks, and combine it with miRNA network simi-
larity and disease semantic similarity network. Through
Equations (4) and (5), we generate two corpora containing
different types of nodes. Then the randomwalk model is used
to determine the node sequence library, and skipgram is used
to obtain the similarity feature vector.

Wij
D = 〠

k∈m
wikwjk + cdij, ð4Þ

Wij
M =〠

k∈d
wikwjk + emij, ð5Þ

where wikwjk is the weight from i to j and j to k and dij is the
weight of nodes i to j in the disease similarity network. mij is
the weight of nodes i to j in miRNA network. c and e are the
weights of similarity networks.

However, the random walk strategy of DeepWalk is not
optimal, so we redesign a random walk method. The specific
way is as follows:

(1) Obtain two networks with the same type of nodes by
Equations (4) and (5) and construct two homoge-
neous networks by combining disease semantic sim-
ilarity and miRNA functional similarity

(2) The more links for one node, the more important the
proof is, and the more random walk sequences start
from it

(3) Many random walk strategies [22] are to produce
fixed length sequences, which does not conform to
the actual rule of node embedding. The number of
words in each sentence is uncertain. Therefore, we
obtain node sequences of different lengths by making
random walk stop or return to the original initial

Algorithm: WalkGenerator(W, R, maxT, minT, p, c, e).
Input: weight maxtrix of the bipartite networkW, vertex set R, times of max walks from per vertex maxT, times of min walks per vertex
minT, walk stopping probability p,the weight of disease or miRNA’s similarity network c and e。.
Output: a set of vertex sequences DR

1 calculate vertices’ centrality:H=CentralityMeasure(W);
2 calculate WR by Equation (4);
3 foreach vertex vi do
4 l=max(H(vi)∗maxT, minT);
5 for i=0 to l do
6 Dvi

=BiasedRandomWalk(W, vi,p);

7 Add Dvi
into DR

8 Return DR

Pseudocode 1: Pseudocode of node sequence.

Table 3: Concept of TF, FN, FP, and TN.

Prediction values
Actual values

Positive Negative

Positive TP FN

Negative FP TN

PR curve: abscissa is recall rate and ordinate is precision; precision = TP/ð
TP + FPÞ; recall = TP/ðtotal positive samplesÞ = TP/ðTP + FNÞ; ROC curve:
the abscissa is FPR and the ordinate is TPR; TPR = TP/ðTP + FNÞ; FPR =
FP/ðTN + FPÞ.
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node at a certain step. The algorithm of measuring
node importance we can chooses centrality algorithm
or hits [23]. Pseudocode 1 shows the pseudocode of
node sequence obtained by random walk.

Then, skipgram [24] algorithm is used to learn the
embedded vector.

Maximize O2 =
Y

ui∈S∧S∈DU

Y
uC∈Cs uið Þ

p uc ∣ uið Þ, ð6Þ

Maximize O3 =
Y

vj∈S∧S∈Dv

Y
vC∈Cs vjð Þ

p vc ∣ vj
� �

, ð7Þ

where pðuc ∣ uiÞ softmax is used for output.

p uc ∣ uið Þ =
exp ui

*T
θc
*

� �

∑∣U ∣
k=1exp ui

*T
θk
*

� � , ð8Þ

p vc ∣ vj
� �

=
exp vj

*T
θc
*

� �

∑∣V ∣
k=1exp vj

*T
θk
*

� � : ð9Þ

However, due to the large amount of denominator calcu-
lation of softmax, we adopt the method of negative sampling
[24–26], which transforms the calculation of each context
vector into a binary classification problem of noncontext vec-
tor and context vector.

p uc,NNS
S uið Þ ∣ ui

� �
=

Y
z∈uc∧NNS

S uið Þ
p z ∣ uið Þ, ð10Þ

p z ∣ uið Þ =
σ ui

*T
θz
*
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if z is ui′s context

1 − σ ui
*T

θc
*

� �
z ∈NNS

S uið Þ

8>>><
>>>:

: ð11Þ

2.7. Obtain the Node Embedding Vector of the Final Graph
Representation Learning. The function formula of the final
optimization is Equation (12).

Maximize L = α log O2 + β log O3 − γO1: ð12Þ

In the end, the embedding vector is obtained by iterating

the embedding vector with random gradient descent [27].
For example, we use random gradient descent to update ui

*

and vj
*
for O1 :

ui
* = ui

* + λ γwij 1 − σ ui
*T

vj
*

� �h i
∗ vj

*
n o

, ð13Þ

vj
* = vj

* + λ γwij 1 − σ ui
*T

vj
*

� �h i
∗ ui

*
n o

, ð14Þ

where σ is the sigmoid function and λ is the learning rate.
For O2 and O3, gradient descent is also used to update ui

*

and vj
*
:

ui
* = ui

* + λ 〠
z∈ ucf g∪NNS

S uið Þ
α I z, uið Þ − σ ui
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*
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ð16Þ
where Iðz, uiÞ is i in ui’s context, if exist Iðz, uiÞ is 1 and 0

if not. Iðz, vjÞ is similarity. For the centre word’s contextual

and noncontext word vectors θz
*

and ϑz
*
, they are defined as

(17) and (18).

θz
*

= θz
*

+ λ α I z, uið Þ − σ ui
*T
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� �	 
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*
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, ð17Þ

ϑz
*

= ϑz
*

+ λ β I z, vj
� �

− σ vj
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*

� �	 

∗ vj

*
� �

: ð18Þ

By considering both the first similarity relation and the
second similarity relation, the node representation is learned.
Then, we can use random forests to make predictions.

2.8. Criteria for Validation of Prediction. For the binary clas-
sification problem, according to the combination of real class
and learner prediction category, the examples can be divided
into true positive example (TP), false negative example (FN),
false positive example (FP), and true negative example (TN)
as shown in Table 3.

AUC is the area under the curve, and its calculation
method takes into account the classification ability of the

Table 4: Influence of different networks on results.

ROC_AUC PR_AUC PREC ACC F1 Recall

1 0:8952 ± 0:003 0:9002 ± 0:002 0:6744 ± 0:01 0:8153 ± 0:02 0:8104 ± 0:004 0:7863 ± 0:004

2 0:8833 ± 0:002 0:8916 ± 0:0015 0:6480 ± 0:015 0:8034 ± 0:02 0:7986 ± 0:004 0:7861 ± 0:005

3 0:8906 ± 0:0015 0:8966 ± 0:002 0:663 ± 0:001 0:8103 ± 0:015 0:8054 ± 0:003 0:7857 ± 0:004

4 0:8914 ± 0:001 0:8968 ± 0:0015 0:6634 ± 0:003 0:8115 ± 0:02 0:8056 ± 0:002 0:7813 ± 0:004
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Figure 1: Influence of parameters on prediction effect. The parameter scores mean the value obtained by ROC or PR. The scores of alpha,
beta, and gamma fluctuate greatly. These three parameters play an important role in regulating the size of the first similarity and the
second similarity.
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classifier for positive and negative cases. In the case of unbal-
anced samples, the classifier can still make a reasonable eval-
uation. The larger the AUC, the more advanced the
prediction results of the samples and the better the prediction
effect. In addition to the above two important indicators, we
also select precision and accuracy; F1 scores and recall were
used as the evaluation criteria.

3. Results and Discussion

3.1. Results. The 4 : 1 data set is divided into training set and
test set, and the final features are obtained by five cross vali-
dation. The feature dimension is 128 dimensions, and 2102
node vectors are obtained. Because this is an unbalanced clas-
sification task, we solve this problem by randomly selecting
the same number of unconnected edges as negative examples.
The random forest [28] is used to predict the parameters. For
the weight of the similarity between the two networks, we
choose 0.5 that is half. The maximum number of steps
max_t of random walk is 32, and the minimum number of
steps is 1, 0.15 for the probability of stopping immediately.
0.0001, 0.01, and 0.1 are for the three optimization objective
functions, respectively. The AUC values of ROC and PR are
0:8954 ± 0:001 and 0:9002 ± 0:0015.

We also measure the results of adding network similarity
and not adding network similarity. The results shown in
Table 4 are as follows: 1 is the embedding method with two
similar networks added, 2 is the embedding method without
adding network, 3 is the embedding method with adding dis-
ease network, and 4 is the result of adding miRNA similarity
network. From the results, we can see the result of adding
similar network. It is the best. This shows that we have greatly
improved the prediction effect by adding network similarity.

3.2. Computational Efficiency. Because this paper uses
Python implementation, so the time efficiency will be lower
than other embedding methods completed by C++. C++ is
closer to the bottom, so the efficiency will be improved. How-
ever, Python has many data processing-related libraries,
which will make the code writing more convenient. In this
paper, the running time efficiency is minute level, and other
methods are seconds’ level.

3.3. Parameter Analysis. Important parameters are analyzed
as shown in Figure 1. The parameter scores mean the value
obtained by ROC or PR, and ws is the size of the context win-
dow after selecting a central word in the randomwalk corpus.
As the window becomes larger, the AUC of ROC and AUC of
PR increase, which is in line with the actual law. The more
context is, the more accurate the prediction will be. However,
when the window reaches a certain value, AUC of ROC and
AUC of PR tend to be stable, because the context information
is enough to produce prediction results. ns is the number of
negative samples selected. With the increase of the number
of negative samples, the prediction will be more accurate. d
is the dimension of the embedded vector. It can be concluded
that the higher the dimension is, the more original informa-
tion it retains, and the more accurate the prediction is. But
when it reaches a certain value, it also tends to be stable. α,
β, and γ are the coefficients of the optimization function,
respectively. It can be seen that the fluctuation is very obvi-
ous, which indicates that they are important parameters to
balance the first similarity and the second similarity for the
embedded vector. Single increase of explicit or implicit rela-
tionship will lead to the uneven proportion of the first simi-
larity and the second similarity, which will lead to the
fluctuation of the prediction results.

3.4. Comparison of Network Embedding Methods. In order to
compare the characteristics of this paper, we select six
methods, such as DeepWalk, line, node2vec, grarep [29],
GF, lap [30], and LLE [31], and we compare the results.
The same data and prediction methods are used to measure
the performance of this method. The following are the intro-
duction of some of these methods and the results of compar-
ative experiments.

DeepWalk: a node embedding method for heterogeneous
networks, which obtains node sequences through unbalanced
random walks, and then uses word2vec to obtain embedding
vectors

Line: by optimizing the first and second similarity in a
heterogeneous network, the final node vector is obtained

Node2vec: inherits DeepWalk and generates node
sequence through organized random walk

Grarep: using matrix decomposition to solve network
embedding problem. It can deal with weighted networks
and integrate the global structure information in the process
of learning network representation. However, due to the
large amount of computation, this method will be particu-
larly time-consuming, so it cannot be used in large-scale
networks

GF: higher order nearest neighbor keeps embedding. By
introducing higher order similarity matrix, higher-order sim-
ilarity is preserved by generalized singular value decomposi-
tion to obtain embedding vector

From Table 5 to Figure 2, we can see that the ROC and
AUC of PR method in this paper are better than other net-
work embedding methods.

3.5. Comparison of Different Classifiers. Table 6 shows the
comparison of the prediction results of different classifiers
on the embedded vector. We compared six classifiers. The

Table 5: Comparison of network embedding methods.

Auc_roc Auc_pr

PmDNE 0:8954 ± 0:003 0:9002 ± 0:002

DeepWalk 0:8689 ± 0:002 0:8780 ± 0:002

Line 0:8302 ± 0:003 0:8305 ± 0:002

Node2Vec 0:8807 ± 0:004 0:8782 ± 0:004

GraRep 0:8766 ± 0:002 0:8760 ± 0:003

GF 0:8881 ± 0:004 0:8856 ± 0:003

Lap 0:7706 ± 0:004 0:7062 ± 0:002

lle 0:8670 ± 0:004 0:8673 ± 0:004
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Figure 2: Experimental results for PR and ROC curves of each models: (a) ROC curves for all models; (b) PR curves for all models.
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RF is the Random Forest Classifier; KNN is the K Neighbors
Classifier; ADBC is the AdaBoost Classifier; LR is the Logistic
Regression Classifier; GBC is the Gradient Boosting Classi-
fier; SVM is the support vector machines.

4. Conclusion

We propose PmDNE, a method based on network embed-
ding and network similarity analysis, to predict the
miRNA-disease association. For embedded vectors, 128
dimensions are used, and the accuracy of prediction is signif-
icantly improved. The values of PR and AUC of PmDNE are
0.9002 and 0.8954, respectively. Compared with other net-
work embedding methods, PmDNE has better ability on
extract the features of disease and miRNA networks. Our
method improves the efficiency of miRNA-disease associa-
tion prediction. This method can also be extended to other
area for biomedical network prediction.

Data Availability
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miRNA function similarity data [17].
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