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Simple Summary: Spinal cord injury often disrupts connections between the brain and spinal cord
leading to a plethora of health complications, including bladder dysfunction. Spinal cord injured
patients are left with symptoms such as a leaky bladder (the inability to hold their urine), frequent
urinary tract infections, and potential kidney failure. However, previous studies have shown that
manipulation of serotoninergic receptors can improve urinary performance following spinal cord
injury. In the current study, we sought to explore how stimulation of a specific serotonergic receptor
subtype can significantly enhance bladder function in spinal cord injured rats. To do so, we utilized
spinal cord injured female rats that underwent various bladder performance evaluations combined
with pharmacological intervention of a specific serotonergic subtype. Additionally, the primary site
of action was investigated to determine effects elicited during various administration routes (e.g.,
directly into the cord, into the femoral vein, or into the skin). Stimulation of this receptor subtype,
regardless of delivery route, improved activity of the external urethral sphincter and detrusor-
sphincter coordination in spinal cord injured rats. Collectively, the results of these experiments have
the potential to provide vital guidance for the development of therapeutic strategies to alleviate
urinary dysfunction following spinal cord injury.

Abstract: Traumatic spinal cord injury (SCI) interrupts spinobulbospinal micturition reflex pathways
and results in urinary dysfunction. Over time, an involuntary bladder reflex is established due
to the reorganization of spinal circuitry. Previous studies show that manipulation of serotonin
2A (5-HT2A) receptors affects recovered bladder function, but it remains unclear if this receptor
regulates the activity of the external urethral sphincter (EUS) following SCI. To elucidate how central
and peripheral serotonergic machinery acts on the lower urinary tract (LUT) system, we employed
bladder cystometry and EUS electromyography recordings combined with intravenous or intrathecal
pharmacological interventions of 5-HT2A receptors in female SCI rats. Three to four weeks after
a T10 spinal transection, systemic and central blockage of 5-HT2A receptors with MDL only slightly
influenced the micturition reflex. However, delivery of the 5-HT2A receptor agonist, DOI, increased
EUS tonic activity and elicited bursting during voiding. Additionally, subcutaneous administration of
DOI verified the enhancement of continence and voiding capability during spontaneous micturition
in metabolic cage assays. Although spinal 5HT2A receptors may not be actively involved in the
recovered micturition reflex, stimulating this receptor subtype enhances EUS function and the
synergistic activity between the detrusor and sphincter to improve the micturition reflex in rats
with SCI.

Keywords: micturition; external urethral sphincter; spinal cord injury; serotonin; electromyogram

1. Introduction

The lower urinary tract (LUT) has two main functions, the storage and periodic elimi-
nation of urine. These two processes are dependent upon coordinated activity between
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the smooth muscle of the bladder detrusor and the striated external urethral sphincter
(EUS). In normal conditions, this synergy is accomplished through a complex neural con-
trol system involving multiple neurotransmitters and neuropeptides at the brain, spinal
cord, and peripheral levels. Among the many neuromodulators of micturition, serotonin
(5-hydroxytrpytamine, 5-HT) has gained significant attention over the years as numerous
anatomical [1–3] and pharmacological investigations [4,5] provide important evidence of
5-HT in the central pathways controlling bladder function [6]. Supraspinal serotonergic
pathways mainly originate from the caudal raphe nuclei within the brainstem [7] and
distribute terminals to sensory, motor, and autonomic regions of the spinal cord [8]. Addi-
tionally, previous studies have demonstrated that 5-HT2A receptors are expressed in the
lower spinal cord [9], suggesting that these receptors have a modulatory role in pelvic
visceral function.

Traumatic spinal cord injury (SCI) often interrupts spinobulbospinal micturition reflex
pathways and results in LUT dysfunction. Following SCI, the bladder is initially areflexic
but then partially recovers over time due to the reestablishment of an involuntary spinal
micturition reflex pathway [10]. However, this partial recovery entails the emergence of
detrusor-sphincter dyssynergia (DSD) and bladder hyperreflexia (or overactivity) which
causes inefficient voiding and incontinence. Additionally, a large volume of residual urine
remains in the bladder which increases the risk of infection and even life-threatening renal
failure [11]. The most common treatments used to empty the bladder or treat overactivity
are intermittent catheterization [12], antimuscarinic medications [13], and the neuromus-
cular blocker onabotulinumtoxin A (BTX-A) [14,15]. However, some treatment strategies
have been met with serious health complications. Intermittent catheterization often leads
to recurrent urinary tract infections and re-hospitalization, and antimuscarinic medications
can have varying effects, such as tachycardia and impairment in cognition depending on
what muscarinic receptor they are acting upon [11,16]. Additionally, patients who have
undergone BTX-A injections have reported minor side effects, including urinary retention,
urinary tract infection, and hematuria [17]. Therefore, limited effective treatment options
are available to SCI individuals who suffer from lower urinary tract dysfunction.

The mechanisms that underlie and regulate micturition function after SCI are not
well understood. Thus, there is an urgent need to elucidate such mechanisms of the re-
covered bladder reflex following SCI. Although disrupted supraspinal 5-HT projections
no longer transport serotonin to the spinal cord, a small amount of serotonin remains de-
tectable below the lesion [18]. This residual neurotransmitter was believed to be produced
solely by sparse intraspinal 5-HT neurons [19]. That is, until recent investigations demon-
strated that SCI enables spinal aromatic L-amino acid decarboxylase (AADC) cells distal to
the lesion to acquire an enhanced ability to produce 5-HT from its immediate precursor,
5-hydroxytryptophan [20]. This change in spinal AADC cells is thought to be initiated
by the loss of inhibition from descending 5-HT projections, which together with an up-
regulation of 5-HT2A receptors, increases the excitability of spinal motoneurons. In fact,
expression of a variety of 5-HT receptors persists in the injured spinal cord [21].

Though previous studies reported that activation of 5-HT2A receptors affects blad-
der contractions to reduce residual urine and increase voiding efficiency in urethane-
anesthetized SCI rats [22], it remains unclear if 5-HT2A receptors regulate activity of the
EUS and coordination of detrusor and sphincter activity following SCI. Further, various
5-HT receptor subtypes were recently found to be expressed within the peripheral organs of
the LUT [23,24]. It has been suggested that 5-HT2A subtypes can function as postjunctional
receptors to peripherally induce detrusor contractions, whereas 5-HT7 causes relaxation
of the bladder neck [25]. This implies that these receptors may have contrasting roles
in micturition function depending on where they are localized. It is thus necessary to
differentiate the central vs. peripheral role of the 5-HT system with respect to micturition
function. In the present study, we utilized pharmacological interventions of spinal 5-HT2A
receptors combined with bladder and EUS reflex assessments as well as metabolic cage
assays in conscious SCI rats to answer these questions. The results of these experiments
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have the potential to provide vital guidance for the development of therapeutic strategies
to alleviate urinary dysfunction following SCI.

2. Materials and Methods
2.1. Animals

A total of 23 female adult Wistar rats (weigh 200–250 g, Charles River, Wilmington,
MA, USA) were used. Animals were housed in sets of three per cage to provide social
enrichment. Rats with a spinal cord transection (n = 7) were employed for metabolic cages.
Some of these rats (n = 6, one suffered a leg injury after testing so it was excluded from
subsequent experiments) were later used, together with other SCI rats (n = 6), for micturi-
tion reflex assays. Naïve rats (n = 10) were used to collect spinal cord tissue for molecular
analyses. Institutional Animal Care and Use Committee and National Institute of Health
guidelines on animal care were strictly followed to minimize the number of animals used
and any potential suffering. Humane consideration for the well-being of animals was
incorporated into the experimental design and conduct. All experimental procedures were
reviewed by a local animal care committee to ensure compliance (Project identification
code: 1045137).

2.2. Spinal Cord Surgery

Rats underwent a complete spinal cord transection at the 10th thoracic level (T10) to
remove supraspinal control of micturition. Animals were anesthetized with 2% isoflurane
and a partial laminectomy was performed at the T8 vertebrae to expose the dorsal spinal
cord. The spinal cord was completely transected at T10 using a No. 11 blade. Lesion
completeness was verified visually at the time of surgery. Overlying musculature and
skin were then closed. Animals were administered Lactated Ringer’s solution (Baxter
Healthcare, Deerfield, IL, USA), cefazolin (10 mg/kg), and buprenex (0.1 mg/kg; Reckitt
Benckiser, Slough, United Kingdom) post-operatively. Bladders were manually expressed
at least three times per day until sacrifice.

2.3. Metabolic Cages

Three weeks after SCI, rats (n = 7) were placed in a metabolic cage apparatus (Braintree
Scientific, Chicago, IL, USA) to record spontaneous voiding patterns. It is important to
note that prior to being placed in cages, bladders were manually expressed to ensure
that they were empty at the beginning of the recording. After being placed into cages,
animals were allowed 3 h for acclimation before the administration of drugs or vehicle.
Then, animals were subcutaneously (s.c) injected with 300 µL of either saline or the 5-
HT2A agonist 2,5-dimethoxy-4-iodoamphetamine (DOI, 60 µg/kg). Urine output was
measured on a pressure sensor connected to a computer for the recording of micturition
frequency, expelled volume per void of urine, and voiding interval. Data was collected and
stored using Windaq-148 software (Dataq Instruments, Akron, OH, USA). This procedure
was repeated three times with either saline or DOI injections. The following micturition
variables were assessed: (i) total urine expelled, (ii) volume of urine expelled per void, (iii)
voiding frequency, and (iv) total water consumed. These variables were evaluated at both
a 3 and 6 h time point following drug or vehicle administration. In each rat, parameter
values from three different experiments were averaged together to determine the mean
value, which was further used to statistically analyze the data using a paired t-test.

2.4. Bladder Cystometry and EUS Electromyography (EMG) Recordings

Three to four weeks after SCI, rats were anesthetized with 2% isoflurane and an in-
cision was made in the lower abdomen to expose the bladder. The apex of the bladder
dome was punctured using a 20-gauge needle. One end of a catheter (PE-60; Clay Adams,
New York, NY, USA) was inserted into the bladder [26]. The abdominal wall was then
sutured closed with the other end of the catheter protruding from the sutured area to allow
for infusion of saline into the bladder. To obtain EUS electromyography (EMG) recordings,



Biology 2021, 10, 68 4 of 16

the pubic symphysis was removed to expose the urethra and EUS. Two fine-wire electrodes
(AstroNova, West Warwick, RI, USA) with exposed tips were percutaneously inserted on
both sides of the EUS. Alternatively, two internal electrodes were placed on both sides
of the EUS via the opening of the pubic symphysis. In rats receiving intravenous (i.v.)
delivery of pharmacological agents (n = 6), a separate cannula (PE-10) filled with saline
was implanted in the right femoral vein. In rats receiving intrathecal (i.t.) delivery of
drugs or vehicle (n = 6), an ITC 32G catheter (ReCathCo, Allison Park, PA, USA) was
placed underneath the dura at the 1st/2nd lumbar spinal cord level (L1/2) and the tip of
the catheter was further advanced to the L6/S1 level [27]. In both i.v. and i.t. delivery,
rats received injections of gradually increased doses of MDL and then increasing doses of
DOI followed by blockage with MDL.

After disconnecting with isoflurane, rats were placed into a restraining cage (KN-
326, Natsume, Tokyo, Japan and given time to regain consciousness before recordings.
The bladder catheter was connected to a pressure transducer (Transbridge, WPI, Sarasota,
FL, USA) and a microinjection pump (SP2001, WPI). Electrodes were connected to an al-
ternating amplifier (P511, AstroNova, West Warwick, RI, USA) and a recording system
(Windaq, DATAQ Instruments, Akron, OH, USA) at a sample frequency of 10 kHz. Room
temperature saline was slowly infused into the bladder (0.1 mL/min) and at least 1 h
adaptation time was ensured before starting the recording. Adaptation was confirmed
visually by the appearance of consistent voids as evident in bladder pressure and stabiliza-
tion of EUS EMG activity. During the recordings, at least 4 continuous stable micturition
cycles pre- and post- drug delivery were collected per rat. Experiments lasted no longer
than 4 h. Afterwards, the recorded cystometry and EMG traces were opened in Dataq
Browser software for analysis. Urodynamic parameters including the voiding amplitude of
intravesical pressure (VA), the voiding interval between two sequential voiding events (VI),
the voiding volume (VV), bladder contraction duration (CD), and non-voiding contractions
(NVCs) were measured. NVCs were defined as rhythmic intravesical pressure increases
that were at least 5 mmHg from baseline without a release of fluid from the urethra [28].
Additionally, various EUS EMG parameters were also evaluated including, EUS tonic and
bursting activity which occur before and during voiding, respectively. To measure the
tonic activity, the root mean square (RMS) and maximum amplitude (MA) of EMG activity
were evaluated during 5 s of the filling phase right before a void occurred. The duration
of EUS bursting activity during voiding was measured. In these SCI rats, EUS bursting
activity occurred ~40–50% of the time while others displayed high-amplitude tonic activity
during voiding. In each rat, the parameter values in 4 voiding cycles were averaged to
determine the mean value for statistical analysis. The post-drug/saline parameters for each
rat were normalized by basal values as a percentage and then a Friedman’s test followed
by Dunn’s multiple comparisons was used. Immediately after the recordings, some rats
were overdosed with euthasol to harvest fresh tissues for molecular analysis.

2.5. Drugs

The 5-HT2A agonist DOI or antagonist (R-(+)-α-(2,3-dimethoxyphenyl)-1-[2-(4-
fluorophenylethyl)]-4-piperidinemethanol (MDL) were dissolved in saline. The doses
of drugs (Tables 1 and 2) were chosen on the basis of previously described data [22] as well
as our own pilot experiments. In metabolic cage assays, DOI (60 µg/kg; 300 µL) was s.c.
administered whereas injections of saline (vehicle) served as a control. For cystometry and
EUS EMG recordings, saline was delivered i.v. (100 µL) first and increased doses of drugs
with equivalent volumes subsequently followed. In rats with i.t. drug administration, a vol-
ume of 10 µL was injected for saline or each drug dose. Urodynamic data were collected
after each dose of a drug was delivered. The interval was at least 30 min between adjacent
doses. For administration of the 2nd drug (DOI), we waited at least 1 h after the last dose
of the 1st drug (MDL) was delivered to allow sufficient time for washout. Data were then
collected again during basal and saline conditions followed by drug delivery.
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Table 1. Normalized parameters of bladder cystometry and EUS EMG activity in SCI rats (i.v. administration).

Drugs Doses
(/kg)

Bladder CMG EUS EMG
VV

VA CD VI # NVCs RMS MA

MDL (n = 6)
(5HT2A receptor

antagonist)

Saline 1.11 ± 0.10 0.96 ± 0.05 1.00 ± 0.05 1.31 ± 0.31 0.95 ± 0.06 0.82 ± 0.12 0.95 ± 0.09
20 µg 1.01 ± 0.19 0.93 ± 0.05 1.07 ± 0.14 1.25 ± 0.70 0.87 ± 0.02 0.71 ± 0.09 1.00 ± 0.15

0.1 mg 0.97 ± 0.06 0.98 ± 0.06 1.22 ± 0.11 * 1.56 ± 0.86 0.96 ± 0.09 0.81 ± 0.10 1.15 ± 0.10
0.5 mg 1.04 ± 0.04 0.95 ± 0.06 1.10 ± 0.07 0.88 ± 0.79 1.11 ± 0.16 1.00 ± 0.37 1.09 ± 0.14

DOI (n = 6)
(5HT2A receptor

agonist)

Saline 1.11 ± 0.10 0.96 ± 0.05 1.00 ± 0.05 1.31 ± 0.31 0.95 ± 0.06 0.82 ± 0.12 0.95 ± 0.09
5.0 µg 1.08 ± 0.04 0.98 ± 0.04 1.34 ± 0.11 1.00 ± 0.84 1.03 ± 0.14 0.69 ± 0.97 1.23 ± 0.15
20 µg 1.06 ± 0.08 1.12 ± 0.04 1.73 ± 0.17 * 2.19 ± 1.59 1.13 ± 0.13 0.84 ± 0.21 1.32 ± 0.12 *

0.1 mg 1.00 ± 0.08 1.01 ± 0.04 1.51 ± 0.30 1.31 ± 0.80 1.53 ± 0.24 * 1.64 ± 0.55 1.24 ± 0.17

* p < 0.05; VA, voiding amplitude of intravesical pressure, CD, contraction duration, VI, voiding interval, VV, voiding volume, NVCs,
non-voiding contractions, RMS, root mean square, MA, maximum amplitude of tonic activity; # non-normalized data.

Table 2. Normalized parameters of bladder cystometry and EUS EMG activity in SCI rats (i.t. administration).

Drugs Doses
(/kg)

Bladder CMG EUS EMG
VV

VA CD VI # NVCs RMS MA

MDL (n = 6)
(5HT2A receptor

antagonist)

Saline 1.23 ± 0.11 1.01 ± 0.01 1.12 ± 0.11 0.29 ± 0.15 0.97 ± 0.19 0.92 ± 0.07 0.81 ± 0.03
2 µg 1.13 ± 0.10 0.97 ± 0.01 1.12 ± 0.11 0.20 ± 0.13 1.09 ± 0.06 0.95 ± 0.08 0.78 ± 0.03
10 µg 1.22 ± 0.18 1.08 ± 0.09 1.34 ± 0.20 0.29 ± 0.15 0.98 ± 0.05 0.74 ± 0.11 1.07 ± 0.09
50 µg 0.81 ± 0.08 0.83 ± 0.05 1.19 ± 0.15 0.58 ± 0.26 1.11 ± 0.05 1.46 ± 0.30 0.95 ± 0.09

DOI (n = 6)
(5HT2A receptor

agonist)

Saline 0.94 ± 0.03 1.09 ± 0.04 1.24 ± 0.14 1.08 ± 0.60 1.01 ± 0.03 1.17 ± 0.20 0.95 ± 0.10
0.5 µg 1.03 ± 0.09 1.14 ± 0.05 1.42 ± 0.46 0.79 ± 0.64 1.01 ± 0.03 1.05 ± 0.09 0.88 ± 0.12
2 µg 1.21 ± 0.13 1.13 ± 0.08 3.27 ± 1.04 * 2.70 ± 1.77 1.14 ± 0.17 1.12 ± 0.28 1.14 ± 0.18
10 µg 1.12 ± 0.11 1.09 ± 0.05 3.98 ± 1.58 * 3.33 ± 2.41 1.46 ± 0.21 1.96 ± 0.31 1.33 ± 0.18 *

* p < 0.05; VA, voiding amplitude of intravesical pressure, CD, contraction duration, VI, voiding interval, VV, voiding volume, NVCs,
non-voiding contractions, RMS, root mean square, MA, maximum amplitude of tonic activity; # non-normalized data.

2.6. Fresh Tissue Harvesting and Protein Isolation

Anesthetized rats were perfused with HEPES buffer and approximately 0.5 cm spinal
cord segments at T4/5 above the injury as well as L1/2 and L6/S1 below the injury,
where neurons control the LUT, were extracted from naïve (n = 4) and SCI rats (n = 8).
Sections were immediately frozen in dry ice and stored in −80 ◦C. Spinal cords were
homogenized in 1 ml of RIPA buffer with Pierce™ protease and phosphatase inhibitors
(1 tablet/10 mL RIPA buffer, Thermo Scientific, Waltham, MA, USA). The homogenized
spinal cords were centrifuged at 4700 rpm for 90 s, and supernatants were obtained and
stored at −80 ◦C. Following homogenization, standard protein concentrations were es-
tablished with a Bradford protein assay, and plates were read on an Infinite® 200 Pro
microplate reader (Tecan, Männerdorf, Switzerland) at 595 nm using the i-control soft-
ware package.

2.7. Western Blot

A total of 30 µg of each spinal cord sample was denatured using 2× Laemmli buffer
containing 5% β-mercaptoethanol at 95 ◦C for 5 min and loaded onto a Mini-PROTEAN®

TGX Stain-Free™ Protein Gel (Bio-Rad, Hercules, CA, USA). All gels ran for 15 min at
80 V, followed by an additional 30 min at 200 V. Following separation, the samples were
transferred onto a polyvinylidene difluoride membrane (Bio-Rad) using the Trans-Blot®

Turbo™ machine (Bio-Rad). After transfer, membranes were incubated with primary
antibody against the 5-HT2A receptor (rabbit, 1:500, Immunostar, Hudson, WI, USA)
and glyceraldehye-3-phosphate dehydrogenase (GAPDH, mouse, 1:2000, Cell Signaling
Technology, Danvers, MA, USA) overnight at 4 ◦C. Membranes were then probed with
an anti-rabbit or mouse HRP-linked secondary antibody (1:10,000, Cell Signaling). Mem-
branes were then developed with the Clarity™ Western ECL substrate kit (Bio-Rad) and
imaged using HyBlot CL™ autoradiography film (Denville, Metuchen, NJ, USA). Receptor
expression was normalized to the corresponding protein density of GAPDH. Following
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normalization, data was averaged and further compared between naïve and SCI groups
with a student’s t-test (p < 0.05).

2.8. RNA Extraction/Quantitative Real-Time PCR

Anesthetized rats (n = 6 naïve and 9 SCI) were decapitated and immediately fresh
spinal cord tissue at T4/5, L1/2, and L6/S1 segments (approximately 0.5 cm) was dis-
sected. Total RNA was extracted with an E.Z.N.A. Kit II (Omega Bio-Tek, Norcross,
GA, USA) according to the manufacturer’s instructions. RNA concentration and the
260/280 nm absorbance ratio were assessed using a Nanodrop spectrophotometer (Thermo
Fisher). RNA was reverse transcribed into cDNA using the iScript reverse transcrip-
tion supermix (Bio-Rad). Quantitative real-time PCR was performed with SYBR Green
PCR Master Mix on a CFX Connect Real-Time PCR detection system (Bio-Rad). Primer
sequences used were 5-HT2A forward: 5′-AGAAGCCACCTTGTGTGTGA-3′, reverse: 5′-
TTGCTCATTGCTGATGGACT-3′; GAPDH forward: 5′-CCATCCCAGACCC CATAAC-3′,
reverse: 5′-GCAGCGAACTTTATTGATGG-3′. Expression levels for each amplified gene
were calculated using the comparative ∆Ct method, where ∆Ct = Ct (experimental gene) –
Ct (reference gene) for each biological replicate. GAPDH was chosen as a reference gene.
For each mRNA measured in qPCR, gene expression values were averaged across biological
replicates. The data was further statistically analyzed using a student’s t-test to compare
gene expression between naïve and SCI rats (p < 0.05).

2.9. Statistical Analyses

Statistical analyses were performed in GraphPad Prism 8 (GraphPad Software,
San Deigo, CA, USA). Significance throughout all experiments was set at p < 0.05. Data are
represented as mean± SEM. All groups (intact vs. SCI) and drugs (saline, MDL, DOI) were
kept blind to the observer as to avoid biases during molecular and urodynamic analyses.
Detailed analyses are listed separately under each experiment described above.

3. Results
3.1. 5-HT2A Protein and Gene Expression Is Sustained in the Spinal Cord Following SCI

Protein expression of 5-HT2A receptors was measured with western blot. No dif-
ference was observed between naïve and SCI rats in terms of protein expression levels
of this receptor above and below the level of injury (Naïve T4/5, 0.24 ± 0.05; SCI T4/5,
0.18 ± 0.03; Naïve L1/2, 0.33 ± 0.08; SCI L1/2, 0.19 ± 0.05; Naïve L6/S1, 0.33 ± 0.09;
SCI L6/S1, 0.21 ± 0.04; all p > 0.05, Unpaired t-test). This included two important seg-
ments, L1/2 and L6/S1, which are related to micturition control (Figure 1A, B). In line
with the aforementioned results, mRNA levels of 5-HT2A receptors measured with qPCR
were not altered (Naïve T4/5, 7.08 ± 0.62; SCI T4/5, 6.41 ± 0.68; Naïve L1/2, 7.28 ± 0.85;
SCI L1/2, 6.13 ± 0.65; Naïve L6/S1, 7.30 ± 0.79; SCI L6/S1, 5.89 ± 0.59; all p > 0.05) in
SCI rats (Figure 1C). Therefore, the results suggest that expression of 5-HT2A receptors is
sustained in the spinal cord after SCI.



Biology 2021, 10, 68 7 of 16

Biology 2021, 10, x FOR PEER REVIEW  6 of 16 
 

 

mRNA measured in qPCR, gene expression values were averaged across biological repli‐

cates. The data was further statistically analyzed using a student’s t‐test to compare gene 

expression between naïve and SCI rats (p < 0.05). 

2.9. Statistical Analyses 

Statistical analyses were performed in GraphPad Prism 8 (GraphPad Software, San 

Deigo, CA, USA). Significance throughout all experiments was set at p < 0.05. Data are 

represented as mean ± SEM. All groups (intact vs. SCI) and drugs (saline, MDL, DOI) were 

kept blind to the observer as to avoid biases during molecular and urodynamic analyses. 

Detailed analyses are listed separately under each experiment described above. 

3. Results 

3.1. 5‐HT2A Protein and Gene Expression Is Sustained in the Spinal Cord Following SCI 

Protein expression of 5‐HT2A receptors was measured with western blot. No differ‐

ence was observed between naïve and SCI rats in terms of protein expression levels of this 

receptor above and below the level of injury (Naïve T4/5, 0.24 ± 0.05; SCI T4/5, 0.18 ± 0.03; 

Naïve L1/2, 0.33 ± 0.08; SCI L1/2, 0.19 ± 0.05; Naïve L6/S1, 0.33 ± 0.09; SCI L6/S1, 0.21 ± 0.04; 

all p > 0.05, Unpaired t‐test). This included two important segments, L1/2 and L6/S1, which 

are related to micturition control (Figure 1A, B). In line with the aforementioned results, 

mRNA levels of 5‐HT2A receptors measured with qPCR were not altered (Naïve T4/5, 7.08 

± 0.62; SCI T4/5, 6.41 ± 0.68; Naïve L1/2, 7.28 ± 0.85; SCI L1/2, 6.13 ± 0.65; Naïve L6/S1, 7.30 

± 0.79; SCI L6/S1, 5.89 ± 0.59; all p > 0.05) in SCI rats (Figure 1C). Therefore, the results 

suggest that expression of 5‐HT2A receptors is sustained in the spinal cord after SCI. 

 

Figure 1. Spinal 5‐HT2A receptor expression remains unchanged after SCI. (A), Western blots show 

that there is no difference between naïve and SCI rats in terms of protein expression levels of the 

5‐HT2A receptor above (T4/5) and below the level of injury (L1/2, L6/S1) (Student’s t‐test, all p > 

0.05). (B) and (C), Quantitative PCR analysis reveals that mRNA levels of this receptor were not 

altered at any of the aforementioned segments in SCI rats (all p > 0.05). GAPDH served as a con‐

trol. 

3.2. I.v. Drug Delivery and its Effects on Bladder and EUS Reflexes 

Three to four weeks after T10 spinal cord transection, animals were utilized for blad‐

der cystometry and EUS EMG assays. Firstly, a serial dose of the 5‐HT2A receptor antago‐

nist MDL was administered i.v. to determine the function of these receptors in the recov‐

ered micturition reflex (Table 1). Following administration of the antagonist, there were 

no dramatic changes in cystometry and EMG parameters except a significantly prolonged 

VI (p < 0.05, Friedman’s test followed by Dunn’s) following injection of the middle dose 

Figure 1. Spinal 5-HT2A receptor expression remains unchanged after SCI. (A), Western blots show
that there is no difference between naïve and SCI rats in terms of protein expression levels of the 5-
HT2A receptor above (T4/5) and below the level of injury (L1/2, L6/S1) (Student’s t-test, all p > 0.05).
(B,C), Quantitative PCR analysis reveals that mRNA levels of this receptor were not altered at any of
the aforementioned segments in SCI rats (all p > 0.05). GAPDH served as a control.

3.2. I.v. Drug Delivery and its Effects on Bladder and EUS Reflexes

Three to four weeks after T10 spinal cord transection, animals were utilized for bladder
cystometry and EUS EMG assays. Firstly, a serial dose of the 5-HT2A receptor antagonist
MDL was administered i.v. to determine the function of these receptors in the recovered
micturition reflex (Table 1). Following administration of the antagonist, there were no
dramatic changes in cystometry and EMG parameters except a significantly prolonged VI
(p < 0.05, Friedman’s test followed by Dunn’s) following injection of the middle dose of the
drug. However, some obvious responses were detected after the 5-HT2A receptor agonist
DOI was administered. The mid (20 µg/kg) dose of the drug was able to increase the VI
(p < 0.05) and induce a larger VV (p < 0.01). The occurrence of NVCs had no significant
changes after administration of any of the drugs (all p > 0.05). Notably, the high dose of
DOI (0.1 mg/kg) produced a significant increase in tonic EUS activity (RMS p < 0.01) and
there was also a trend for an increase in the MA value. It also induced non-specific activity
of the EUS along with high amplitude contraction during continuous infusion of saline
into the bladder (Figure 2A). More importantly, DOI was able to trigger a bursting pattern
in the EUS in 4 rats that did not have any such events during baseline or saline delivery.
It is important to note that corresponding bladder high frequency oscillations (HFO) did
not often accompany bursting in these animals (Figure 2B). Ensuing administration with
the mid dose of MDL (0.1 mg/kg) abolished the effects of DOI on the EUS, including
decreased EUS tonic activity in the filling phase and masked bursting during voiding.
Specifically, the results illustrate that systemic blockage of 5-HT2A receptors with MDL
has subtle effects while activation of this receptor subtype with DOI increases EUS tonic
activity and elicits bursting to facilitate voiding in SCI rats.
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Figure 2. Intravenous (i.v.) administration of DOI to stimulate 5-HT2A receptors improves the
micturition reflex during bladder cystometry and sphincter EMG in SCI rats. (A), Stimulating 5-HT2A

receptors with the middle dose of DOI (20 µg/kg) prolongs the VI (p < 0.05, Friedman’s test followed
by Dunn’s) between voiding contractions (asterisks). The high dose of DOI (0.1 mg/kg) increases
EUS tonic activity in the filling phase (p < 0.01). Ensuing injection of MDL (0.1 mg/kg) eliminates
the provoked effects. (B), Representative traces show no EUS bursting activity during voiding
when saline is delivered. However, the middle dose of DOI triggers EUS bursting activity during
voiding. Injection of MDL following the high dose of DOI masks the triggered bursting EUS activity
during voiding.

3.3. I.t. Drug Delivery and Its Effects on Bladder and EUS Reflexes

To clarify whether the effects produced from 5-HT2A receptor manipulation on the
urinary system were working through central mechanisms, we administered drugs i.t.
during bladder cystometry and EUS EMG assays in SCI rats (Table 2). As a result, central
delivery of the 5-HT2A antagonist MDL did not trigger significant responses in bladder and
EUS reflexes. When DOI was administered, both the middle and high doses significantly
prolonged the VI (both p < 0.05, Friedman’s test followed by Dunn’s). The high dose
increased the VV (p < 0.05). Particularly, there was a trend for the high dose of DOI to
induce an increase in EUS tonic activity in both the RMS (1.4 fold) and MA (1.6 fold) values,
although not statistically significant. During voiding, EUS bursting activity accompanied
by bladder detrusor HFO were elicited in 4 animals that did not have such events originally.
The middle dose of DOI increased the duration of EUS bursting (saline 1.6 ± 0.9, DOI
3.8 ± 1.5 s) in 2 rats that had such activity during baseline recordings. This suggests
that DOI can improve the synergistic activity of the sphincter and detrusor (Figure 3).
In addition, there was a trend that suggests the number of NVCs increases after the middle
and high doses of DOI injections, which could be related to the dramatically prolonged VI
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seen with these two doses. After administration with the middle dose of MDL, the effects of
DOI on the EUS were completely abolished. This was apparent by the presence of reduced
EUS tonic activity and the disappearance of bursting (Figure 4). MDL also shortened
the VI of bladder voiding contractions. This suggests that activation of 5-HT2A receptors,
by central administration of DOI, largely affects activity of the EUS, leading to improved
micturition function in SCI rats.
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Figure 3. Intrathecal (i.t.) administration of DOI to stimulate 5-HT2A receptors affects the micturition
reflex during bladder cystometry and sphincter EMG in SCI rats. (A), Representative tracers show
that stimulating 5-HT2A receptors with the middle (2 µg/kg) and high (10 µg/kg) doses of DOI
prolongs the VI (both p < 0.05, Friedman’s test followed by Dunn’s) between voiding contractions
(asterisks) and induces an increase in EUS tonic activity. (B), Importantly, the middle dose of DOI
increases the duration of EUS bursting that consists of more regularly occurring active and silent
periods along with bladder HFO, indicating an enhancement of detrusor-sphincter coordination
during voiding.
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Figure 4. Intrathecal (i.t.) administration of MDL abolishes DOI induced excitatory effects on the
EUS reflex in SCI rats. A representative cystometry and EMG trace demonstrates that MDL, a 5-HT2A

receptor antagonist (10 µg/kg), shortens the VI (p < 0.05, Friedman’s test followed by Dunn’s) (A)
and masks bursting EUS activity (B), leading to the occurrence of detrusor-sphincter dyssynergia.

3.4. S.c. Delivery of DOI Improves Spontaneous Micturition Performance Following SCI

SCI rats were s.c. administered DOI in metabolic cage assays. During the 6 h time
period following drug delivery, DOI significantly increased the VI (saline 52.19 ± 7.36, DOI
82.60 ± 8.93; Paired t-test, p < 0.05) and VV per void (saline 0.8 ± 0.13, DOI 1.04 ± 0.17,
p < 0.05) but decreased the voiding frequency (saline 7.63 ± 1.33, DOI 5.11 ± 0.95, p < 0.05)
(Figure 5). It is important to note that urodynamic parameters were examined out to
12 hr post-drug delivery. However, it was found that only significant changes in urinary
performance could be detected at a maximum of 6 h post-drug administration. There was
no significant change in the total VV. Total water intake was not significantly different
between drug and saline controls (both p > 0.05). This implies that DOI can improve
spontaneous micturition function by increasing continence and voiding capability.
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Figure 5. Stimulating 5-HT2A receptors with DOI delivery improves spontaneous micturition func-
tion in SCI rats. Representative traces show volume-frequency patterns of urination in metabolic
cage assays after 5-HT2A receptor stimulation with DOI within a 6-h time period. Saline injections
served as a control. In each “step-like” curve of these traces (A), the vertical lines represent the VV
per void and the horizontal lines illustrate the VI. After s.c. injection of the 5-HT2A receptor agonist
DOI (60 µg/kg, 300 µL), (B) there was a significant increase in the VV per void and VI in comparison
to saline controls (Paired t-test, all * p < 0.05).

4. Discussion

The present study examined the contribution of 5-HT2A receptors in the micturition
reflex after SCI, with a particular focus on the function of these receptors in the EUS.
Blocking spinal 5-HT2A receptors with central delivery of MDL did not have a meaningful
impact on bladder and sphincter activity. This denotes that endogenous spinal 5-HT,
which has been shown to be present at low levels in the cord after injury, [18] may not
modulate recovered micturition function via spinal receptors following SCI. However,
systemic or central stimulation of 5-HT2A receptors with DOI induced similar effects that
increased EUS tonic activity in the filling phase and triggered bursting during voiding.
This indicates that DOI enhances synergistic activity between the detrusor and sphincter to
improve voiding capability. Thus, DOI elicits its effects mainly through spinal receptors
regardless of delivery route. Though spinal 5-HT2A receptors may not play a role in
the established involuntary spinal micturition reflex after SCI, our results suggest that
stimulation of these receptors mainly acts on motoneurons controlling the EUS to improve
coordination of bladder and sphincter activity while also mitigating DSD to enhance
micturition function.

Serotonergic regulation of LUT function has been explored since the 1960s when
dense supraspinal 5-HT innervation to autonomic nuclei was observed in the lower spinal
cord [29,30], including the dorsal horn and Onuf’s nucleus which contains the motoneurons
that control EUS function [7,31]. Although SCI interrupts descending neuronal pathways,
previous studies have demonstrated the ability of the injured spinal cord to produce
monoamines, such as serotonin, caudal to the level of injury [20]. Further, the expression
of various serotonergic receptors within the lumbosacral cord has been examined [32,33]
as well as an indication for their role in micturition function [34–38]. Accordingly, it is
possible that these spinally located 5-HT receptors also serve to modulate pelvic visceral
function after SCI. In line with this, our results have confirmed that neither the protein nor
mRNA levels of 5-HT2A receptors significantly decreased above or below the level of injury.
However, previous studies reported that their expression is upregulated in motoneurons
following SCI [39]. This contradiction could be due to the fact that our tissue samples were
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collected from spinal segments as opposed to specific populations of individual neurons.
Nevertheless, spinal 5-HT2A receptor expression is sustained in the cord of SCI rats.

Serotonergic receptors lie within both the central and peripheral nervous systems.
Despite the fact that 5-HT2A receptors are widely distributed throughout the brain and
spinal cord [9,31,40], this subtype is also present in the smooth muscle and urothelium of
the bladder [24]. This implies that systemic drug administration may have both peripheral
and central-mediated effects. The middle dose of MDL increased the VI when it was i.v.
injected but did not do so in i.t. delivery, suggesting this minor effect may be mediated
peripherally. In opposition to this, delivery of DOI both i.v. or i.t. elicited similar effects on
the micturition reflex. The role of DOI in bladder function following SCI has previously
been studied and dramatic effects on the facilitation of voiding were reported. Yet, it is
unknown if this drug acts on motoneurons controlling the EUS muscle with regards to the
coordination of the detrusor and sphincter for micturition function.

In the present study, DOI was able to elicit EUS bursting and bladder HFO. This in-
dicates that stimulating spinal 5-HT2A receptors, irrespective of delivery route, largely
triggers its effects through central mechanisms that control the sphincter muscle. The EUS
is continuously relaxed during voiding in humans whereas it is phasically relaxed in
rats. Bursting EUS activity and bladder HFO occur during the expulsion phase in rats.
SCI rats mainly show increased EUS tonic activity with little or no bursting and virtually
no bladder HFO during voiding [41]. EUS bursting consists of both high frequency spikes
that are deemed active periods (AP) and quiescent periods known as silent periods (SP),
which alternate in such a way to allow for relaxation and contraction of the EUS, respec-
tively, and are essential for efficient voiding [42]. HFO are thought to be generated by
EUS bursting activity since these two patterns often occur synergistically [43]. Here we
reported that stimulation of spinal 5-HT2A receptors with DOI provoked EUS bursting.
Subsequently, delivery of MDL to block these receptors eliminated the aforementioned
effects, confirming mediation by spinal 5-HT2A receptors. Similar to results from previous
studies in which 5-HT2A receptors exert excitatory control of the EUS in spinal cord intact
rats [44], our results verified that activation of spinal 5-HT2A receptors in SCI rats triggers
EUS bursting which originates from simultaneous firing of Onuf’s motoneurons. Never-
theless, it has been assumed that propriospinal neurons in the L3/4 spinal cord contribute
to the emergence of EUS bursting and bladder-EUS coordination [45]. If this is the case,
DOI may indirectly affect Onuf’s motoneurons or does so via propriospinal neurons that
express 5-HT2A receptors.

Stimulation of spinal 5-HT2A receptors with DOI increased EUS tonic activity in the
filling phase during reflex assessments. Since EUS tonic activity reflects the capability of
continence and DOI prolonged this activity between bladder contractions (e.g., prolonged
VI), our data implies that DOI augments the ability to prevent leakage. This was also
confirmed in spontaneous micturition assays by metabolic cages and s.c. administration
of DOI in SCI rats. Because DOI did not affect the amplitude of bladder contractions,
it is reasonable to conclude that the general impact of DOI on the micturition reflex is
primarily caused by the agonist’s effects on motoneurons controlling the EUS rather than
on parasympathetic preganglionic neurons regulating the bladder. In addition to its effects
on the EUS, stimulation of 5-HT2A receptors with DOI was able to significantly increase the
voiding volume with both i.v. and i.t. delivery. This implies that the drug improved voiding
efficiency by either (1) reducing the residual volume of urine that remains in the bladder
following a contraction, (2) increasing bladder capacity, or (3) both. Based on previous
reports, delivery of DOI peripherally or centrally increases the voiding volume while
reducing the residual volume of urine [22,39]. Therefore, it seems likely that the increase
in the voiding volume illustrated in the current experiments is due to improved voiding
efficiency. It appears that DOI can produce similar effects in LUT performance when
administered intravenously, intrathecally, and even subcutaneously. Thus, administration
of DOI mainly stimulates centrally located 5-HT2A receptors and contributes to detrusor-
sphincter synergy to enhance voiding capability in SCI rats. Additionally, it is known
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that DOI also has an affinity for 5-HT2C receptors [46,47]. Previous studies have shown
that central 5-HT2C receptors mainly inhibit the micturition reflex [4]. With this in mind,
we administered MDL, which is a selective antagonist for 5-HT2A receptors [48], directly
following the high dose of DOI. This ultimately blocked changes that DOI induced on
urinary function (e.g., EUS bursting and bladder HFO), and therefore, further supports the
notion that DOI improves micturition performance via 5-HT2A and not 2C receptors.

Urethane is currently the most widely used anesthetic to study micturition physiol-
ogy. In fact, the majority of studies that examine the role of 5-HT receptors have been
completed with the use of urethane or some other anesthetic [22,37,49]. The widespread
use of this anesthetic is largely due to the fact that it spares the micturition reflex and is
long-lasting [50]. Although urethane preserves vital parameters, such as bladder HFO
and EUS bursting, it can interfere with the actions of glutamate and its analogs in the
micturition pathway [51]. In addition, urethane was found to suppress sympathetic out-
flow to the bladder, and thus alter bladder capacity [52]. Notably, things become more
complicated when applying anesthetics to SCI animals that already display several urinary
complications (e.g., no bursting periods and emergence of non-voiding contractions) [53].
Therefore, the present study sought to avoid analgesic-related confounds by using awake
rats for bladder cystometry and EUS EMG recordings.

Although most SCI patients have incomplete injuries as opposed to complete [54,55],
a complete spinal cord transection model was deemed the most appropriate for the pur-
poses of this study. The overall goal of this research was to determine the role of 5-HT2A
receptors in the recovered involuntary micturition reflex following SCI, specifically as it
pertains to EUS activity since this has not been thoroughly examined. If an incomplete
injury was to be used in the current experiments, it would be almost impossible to dif-
ferentiate whether the agonist or antagonist were acting at both supraspinal and spinal
levels that control bladder and EUS reflexes due to sparing. Accordingly, to focus on spinal
serotonergic mechanisms, it was necessary to disrupt all supraspinal control. However,
future experiments may be conducted in a contusion model to determine the efficacy of
the effects seen within the current experiments with DOI. Additionally, we used female
rats instead of males due to the ease of bladder care. Since male rats have a long and
narrow urethra [56], bladder care is very difficult in these animals directly following injury.
Importantly, our previous work has shown that both males and females manifest similar
urinary complications, such as DSD and bladder hyperreflexia, following SCI. However,
future experiments should be conducted in male SCI rats to confirm that there are no
apparent sex differences in terms of the role that 5-HT2A receptors play in the recovered
bladder reflex.

In clinical studies, it was established that duloxetine, a 5-HT and norepinephrine
reuptake inhibitor, was able to significantly reduce stress-related urinary incontinence
episodes in women [57]. Duloxetine is proposed to improve continence by increasing the
bioavailability of 5-HT and norepinephrine at presynaptic neurons in Onuf’s nucleus of
the sacral cord, which in turn, is thought to increase EUS activity. This suggests that sero-
tonergic mechanisms also exist in the human spinal cord, and stimulating these pathways
enhances LUT performance not only following SCI but across a broad range of conditions
that elicit urinary complications. Nevertheless, it is important to note that the effects of
each drug used within our study do not discern what population of cells these receptors
are acting upon. Thus, sites of action should be further explored by whole cell patch clamp
recordings in future studies.

5. Conclusions

Endogenous spinal 5-HT may not modulate recovered micturition function via 5-
HT2A receptors following SCI. Nonetheless, both systemic and central stimulation of these
receptors with DOI can induce similar effects to increase EUS tonic activity in the filling
phase and trigger bursting during voiding. It indicates that DOI enhances coordination of
detrusor and sphincter activity to improve micturition function in SCI rats.
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