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Simple Summary: Neurodegenerative diseases are recognized as one of the major public health
issues in aging populations worldwide. High reactive oxygen species (ROS) cause oxidative stress,
leading to cellular injury and neuronal cell death. While it has been used as traditional medicine,
little is known about the neuroprotective effect of the Tiger Milk Mushroom Lignosus rhinocerus
(LR). The aims of this study were to investigate the neuroprotective effect of three extracts of LR,
including ethanol extract (LRE), cold water extract (LRC) and hot water extract (LRH), against
glutamate-induced oxidative stress in mouse hippocampal (HT22) cells (in vitro model) as well as to
determine their effect in Caenorhabditis elegans (in vivo model). We found that only LRE exhibited
neuroprotective effects both in vitro (alleviation of glutamate-induced ROS in HT22 cells, resulting
in increased cell survival) and in vivo (prevention of neurotoxicity in C. elegans). Therefore, active
chemical constituents in LRE may serve as neuroprotectant candidates. Nevertheless, LRE extracts
should be extensively studied for their neuroprotective activity in the future.

Abstract: Despite the Tiger Milk Mushroom Lignosus rhinocerus (LR) having been used as a traditional
medicine, little is known about the neuroprotective effects of LR extracts. This study aims to
investigate the neuroprotective effect of three extracts of LR against glutamate-induced oxidative
stress in mouse hippocampal (HT22) cells as well as to determine their effect in Caenorhabditis
elegans. In vitro, we assessed the toxicity of three LR extracts (ethanol extract (LRE), cold-water
extract (LRC) and hot-water extract (LRH)) and their protective activity by MTT assay, Annexin
V-FITC/propidium iodide staining, Mitochondrial Membrane Potential (MMP) and intracellular
ROS accumulation. Furthermore, we determined the expression of antioxidant genes (catalase (CAT),
superoxide dismutase (SOD1 and SOD2) and glutathione peroxidase (GPx)) by qRT-PCR. In vivo, we
investigated the neuroprotective effect of LRE, not only against an Aβ-induced deficit in chemotaxis
behavior (Alzheimer model) but also against PolyQ40 formation (model for Morbus Huntington) in
transgenic C. elegans. Only LRE significantly reduced both apoptosis and intracellular ROS levels
and significantly increased the expression of antioxidant genes after glutamate-induced oxidative
stress in HT22 cells. In addition, LRE significantly improved the Chemotaxis Index (CI) in C. elegans
and significantly decreased PolyQ40 aggregation. Altogether, the LRE exhibited neuroprotective
properties both in vitro and in vivo.
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1. Introduction

Neurodegenerative disorders including Alzheimer’s diseases (AD), Parkinson’s dis-
ease (PD) and Huntington’s disease (HD) involve degeneration or death of nerve cells [1,2].
One of the factors that plays a complex role in these diseases is reactive oxygen species
(ROS). Normally ROS are generated in the mitochondrial respiratory chain [3]. Excessive
ROS induce oxidative stress causing lipid peroxidation that can lead to brain dysfunction
and death [4]. In addition, ROS accumulation is detrimental for proteins, and nucleic acids
(mutations), which may cause age-related diseases such as diabetes [5], and cancer [6,7].
Endogenous enzymes such as superoxide dismutase (SOD), catalase (CAT) and glutathione
peroxidase (GPx) play an important role in detoxifying ROS [8].

The Tiger Milk Mushroom Lignosus rhinocerus (LR), found in Southeast Asia and China,
has been used in folk medicine for asthma treatment [9]. Furthermore, this mushroom has
anti-inflammatory, antioxidant, anti-proliferative, immuno-modulating and anti-HIV-1 ac-
tivities in addition to a promotion of neurite outgrowth in PC-12 cells [10–12]. The bioactive
compounds of LR consist of 1,3-β- and 1,6-β-glucans which are in a group of β-D-glucose
polysaccharides, lectin which is a glycoprotein, laccase which is a copper-containing ox-
idase enzyme and other fungal immune-modulatory proteins (FIPs), and antioxidant
proteins [13]. Besides carbohydrates and proteins, there are quinones, flavonoid-like com-
pounds, cerebrosides, which are commonly known for a group of glycosphingolipids, and
important components in animal muscle and nerve cell membranes, isoflavones, catechols,
amines, triacylglycerols, sesquiterpenes and steroids [9,14].

Mouse hippocampal (HT22) cells were used to study glutamate-induced oxidative
stress. Glutamate can enhance intracellular ROS levels and lead to oxidative stress in
HT22 because of their lack of an ionotrophic glutamate receptor [15]. In consequence, the
oxidative stress damages nerve cells and causes cell death.

C. elegans, a free-living nematode, contains many genes, which are homologues to
those of humans [16]. This nematode has a short lifespan and is well suited for experiments.
C. elegans is widely used as an animal model for the study of oxidative stress, aging,
longevity and neurodegenerative diseases [17,18].

However, no or few studies have reported the protective effects of extracts from the
Tiger Milk Mushroom in brain cells. Thus, in this study, we set out to investigate the
potential neuroprotective effect of LR extracts against glutamate-induced oxidative stress,
and also determined their effect on the expression of antioxidant genes in HT22 cells. In
addition, we investigated potential neuroprotective effects of LR extracts in C. elegans as an
in vivo model for Morbus Alzheimer and Huntington.

2. Materials and Methods
2.1. Chemicals and Reagents

Analytical grade ethanol was purchased from Merck (Darmatadt, Germany). Dimethyl
sulfoxide (DMSO), 2’, 7’-dichlorodihydrofluorescein diacetate (H2DCFDA) from Sigma-
Aldrich GmbH (Steinheim, Germany). Dulbecco’s modified Eagle medium (DMEM)/low
glucose, fetal bovine serum (FBS) and penicillin-streptomycin solution (10,000 units/mL of
penicillin and 10,000 g/mL of streptomycin) were purchased from HyClone (Logan, UT,
USA). Chloroform, diethyl pyrocarbonate (DEPC), isopropanol and L-glutamic acid were
from Sigma-Aldrich (St. Louis, MO, USA); primers and RT Premix were purchased from
Bioneer (Daejeon, Korea). Phosphate Buffered Saline (PBS) was from Hyclone. Trypan Blue
Stain and Trizol Reagent were from Invitrogen (Invitrogen, Carlsbad, CA, USA). Sodium
azide was purchased from AppliChem GmbH (Darmstadt, Germany), and EGCG was
purchased from Sigma–Aldrich (München, Germany).
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2.2. Mushroom Extraction

A powder of cultivated strain TM02 of L. rhinocerus (LR) was obtained from LiGNO
Biotech™ Sdn Bhd, Selangor, Malaysia. This powder was extracted into three fractions
with ethanol, cold water and hot water using the maceration technique. Briefly, 100 g of LR
powder was macerated with 1 L of ethanol and the extract was placed on the shaker at 4
◦C for 24 h. After that, it was filtered by using Whatman®No.2 filter paper and ethanol
was removed by rotary evaporation (Heidolph, Laborota 4011) to yield the crude ethanol
extract (LRE). Cold water extraction: 100 g of LR powder was suspended in sterile water
and placed on the shaker at 4 ◦C for 24 h. For hot water extraction, sclerotial powder was
extracted with water at 95–100 ◦C for 2 h. After that, the mixture was filtered and freeze
dried by lyophilizer (ModulyoD freeze dryer, Thermo Fisher Scientific, Waltham, MA,
USA) to give a crude cold-water extract (LRC) and a crude hot-water extract (LRH). Yields
of LRE, LRC and LRH were 0.73 g, 11.07 g and 10.13 g, respectively. Before starting the
experiment, the crude extract of LRE was dissolved in DMSO, while the crude extracts of
LRC and LRH were dissolved in sterile water to make the 100 mg/mL stock solution.

2.3. Cell Culture and Treatments

Mouse hippocampal HT22 cells (a generous gift from Professor David Schubert at
the Salk Institute, San Diego, CA, USA) were cultured in a DMEM medium (Hyclone),
supplied with 10% fetal bovine serum, in a humidified atmosphere containing 5% CO2 at
37 ◦C. For treatment, The HT22 cells were divided into 10 groups including control group;
DMSO-treated group; three control extract groups (LRE-, LRC- and LRH-treated groups at
the same concentration 25, 50, 100 and 200 µg/mL in all groups); 0.25 mM N-acetylcysteine
(NAC) as a positive control; four co-treatment groups with 5 mM glutamate including three
extract-treated groups (LRE-, LRC- and LRH-treated groups at the same concentration 25,
50, 100 and 200 µg/mL) and 0.25 mM NAC + 5 mM glutamate. All groups were incubated
for 14 h in 5% CO2 in a 37 ◦C incubator.

2.4. 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide Tetrazolium (MTT) Assay

MTT assay, a colorimetric assay, was used to assess metabolic activity in the cells.
Briefly, HT22 cells were seeded into 96-well plates and incubated overnight at 5% CO2 at
37 ◦C. Next, the cells were treated with the group of treatments as mentioned above and
incubated at 5% CO2 at 37 ◦C for 14 h. After incubation, an MTT solution was added to each
well and incubated for 3 h more in the incubator. After that, the insoluble formazan was
dissolved with 10% SDS and incubated in the incubator overnight. The MTT product was
measured at 570 nm using a microplate reader. The percent of cell viability was calculated
by the following formular.

% Cell growth = [(Abs 570 nm of treated group-blank)/(Abs 570 nm of control-blank)] × 100

2.5. Assessment of Apoptosis by Annexin V-FITC/Propidium Iodide (PI) Staining Using
Flow-Cytometry

A fluorescein isothiocyanate (FITC) conjugated form of Annexin V is used to detect
apoptotic cells. HT22 cells (1 × 105 cells) were seeded in a 12-well plate and incubated
overnight at 5% CO2 at 37 ◦C. Next, the cells were treated with the group of treatments
as mentioned before and incubated in the incubator for 14 h more. After incubation, cells
were harvested, washed and stained with annexin V/PI solution for 15 min in the dark.
Live and dead cells were determined by using a BD FACSCalibur™ flow cytometer (BD
Bioscience, Heidelberg, Germany). Data were collected for groups of at least 10,000 cells
and results are shown as the percentage of apoptotic cells.

2.6. Mitochondrial Membrane Potential (MMP) Assay

The MMP was determined by using a commercial kit (Cell Signaling, Danvers, MA,
USA) including the cationic dye TMRE (tetramethylrhodamine ethyl ester perchlorate) and



Biology 2021, 10, 30 4 of 16

a mitochondrial membrane potential disruptor CCCP (carbonylcyanide 3-chlorophenylhydr
azone) as a positive control for the test. TMRE, a cell membrane permeable fluorescent dye,
was accumulated in intact mitochondria. Depolarized or inactive mitochondria exhibit
decreased membrane potential, resulting in reduced TMRE accumulation. Briefly, cells
were seeded in a 96-well plate and incubated overnight at 5% CO2 at 37 ◦C. Next, the cells
were treated with the group of treatments as mentioned before, except cells of the CCCP
group, which reached a final volume of 100 µL/well and the cells were incubated in the
incubator for 14 h. After incubation, CCCP was added in the positive control group to get
a final concentration of 50 µM, and then cells were incubated at 37 ◦C for 15 min. After
that, a TMRE solution was added to each well to get a final concentration of 200 nM and
the plate was placed in an incubator (37 ◦C and 5% CO2) for 20 min. Next, the solution
was removed and the cells were washed with 1X PBS and then 100 µL/well 1X PBS was
added to the plate. The samples were measured with a microplate reader at an excitation
of about 550 nm and emission of about 580 nm.

2.7. Assessment of Intracellular ROS Accumulation

Intracellular ROS were determined using the CM-H2DCFDA (general oxidative stress
indicator). After 14 h treatment, 10 µM of H2DCFDA was added to HT22 cells and incu-
bated for 30 min at 37 ◦C, followed by washing three times with PBS. The fluorescence inten-
sity (excitation = 485 nm; emission = 535 nm) was measured using an EnSpire®Multimode
Plate Reader (Perkin–Elmer, Waltham, MA, USA) and the photographs were obtained
using an Axio Observer A1 fluorescence microscope (Carl Zeiss, Jena, Germany).

2.8. RNA Isolation and Quantitative RT-PCR

In brief, total RNA was isolated from specific treatment cells using Trizol reagent).
Using Accupower RT Premix (Bioneer), 1 µg of total RNA was converted to cDNA. Quan-
titative real-time PCR reaction was performed by using the Green Star PCR Master Mix
where SYBR Green was included (Bioneer). Then, the specific genes CAT, SOD1, SOD2 and
GPx were determined by the Exicycler Real Time Quantitative Thermal Block (Bioneer).
The specific primers were previously reported by our research group [19]. The relative
expression of each gene was normalized to the internal control gene (β-actin).

2.9. C. elegans Strains and Maintenance

Strains CL2355 (smg-1(cc546) dvIs50 (pCL45 (snb-1::Abeta 1–42:3’ UTR (long) + mtl-
2::GFP) I), CL2122 (dvIs15 ((pPD30.38)unc-54(vector) + (pCL26)mtl-2::GFP)) and AM141
(rmls133 (unc-54::54p::Q40::YFP)) were obtained from Caenorhabditis Genetics Center
(University of Minnesota, Minneapolis, MN, USA). All worms were maintained on a
Nematode Growth Medium (NGM) agar containing Escherichia coli OP50 as a food source
and kept at 16 ◦C, except for AM141 which were kept at 20 ◦C.

Concerning age-synchronized worms, the eggs were isolated by a bleaching reagent
(5M NaOH and 5% NaOCl). They were then vortexed for 10 min and centrifuged for 40 s
at 1300 rpm. Next, the supernatant was discarded and the eggs washed with sterile water
twice. Then, as much water as possible was removed. An 8 mL M9 buffer was added to
a 60 × 15 mm petri dish and the eggs were transferred into the dish and placed in a 20
◦C incubator for 16 h. The eggs in the M9 buffer were hatched and remained at the L1
larvae stage.

2.10. Assessment of Neuroprotective Effects in C. elegans Model
2.10.1. Chemotaxis Assay

Transgenic worms, including CL2355 with a pan-neuronal expression of the Human
Abeta peptide, and CL2122, a control worm, were used. This assay was slightly modified
from Wu Y. et al. [20]. Both the synchronized L1 worms CL2355 and 2122 were transferred
to an S-medium containing E. coli OP 50 as a food source. Each strain of worms was divided
into a control group, a DMSO-treated group and an LRE-treated group at concentrations of
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50, 100 and 200 µg/mL, and 50 µg/mL EGCG (dissolved in DMSO) as a positive control.
All worms were kept at 16 ◦C for 36 h, and then shifted to 23 ◦C and incubated for a further
36 h. Increased temperature is required for the pan-neuronal Aβ1–42 expression in the
strain CL2355. After the incubation, the worms were washed three times with an M9 buffer
to completely remove E. coli OP50. Finally, around 40 worms were placed in the center of
a chemotaxis agar plate (94 mm). Before placing the worms there, 1 µL of the attractant
odorant (0.1% benzaldehyde in 99.8% ethanol) together with 1 µL of 1 M sodium azide,
used as a worm paralyser, were added to one side of the plate. On the opposite side, 1 µL
of the control odorant (99.8% ethanol) along with 1 µL of 1 M sodium azide were added.
Then, all plates were kept at 23 ◦C for 1 h. After that, the worms were counted from both
sides and the chemotaxis index (CI) was calculated by the following formular:

CI = (Na − Nc)/Nt (1)

Na: Number of worms at the attractant position
Nc: Number of worms at the control position
Nt: Total number of worms on the plate

2.10.2. Assessment of PolyQ40 Aggregation

The synchronized transgenic AM141, expressing PolyQ40::YFP as a reporter gene,
were treated the same as with the chemotaxis assay, Then, the worms were incubated at 20
◦C for 72 h. After the incubation period, the worms were mounted on a glass slide with a
drop of 10 mM sodium azide for paralysis and images of at least thirty worms per group
were collected. Fluorescent expression was detected by BIOREVO BZ-9000 fluorescence
microscope (Keyence Deutschland GmbH, Neu-Isenburg, Germany) using 10 × objective
lens at constant exposure time. The number in the PolyQ40 aggregation, located in the
muscle cells of the worms, was counted manually. The mean ± SEM was analyzed for
three independent replications.

2.11. Statistical Analysis

Data are presented as the mean of three independent experiments (the mean ± SEM)
and analyzed with GraphPad Prism 6. Statistical comparison between the control and
treatments was performed using one-way ANOVA following Bonferroni’s method (post-
hoc). Lifespan data were determined by log-rank (Mantel-Cox) tests followed by the
Gehan–Breslow–Wilcoxon test. All the experiments were performed at least three times.
Differences with p < 0.05 were considered statistically significant.

3. Results
3.1. Effect of LR Extracts Against Glutamate-Induced Cytotoxicity

The MTT assay was used to evaluate potential cell cytotoxicity of three extracts from
LR—an ethanol extract (LRE), a cold-water extract (LRC) and a hot-water extract (LRH).
The results showed that 5 mM glutamate significantly reduced the cell viability of HT22
cells by 44.71 ± 3.15% (p < 0.001 compared to control) (Figure 1). In addition, the viability
of cells, treated with LRE, LRH and LRC at concentrations up to 200 µg/mL and 0.25 mM
N-acetylcysteine (NAC), did not differ from that of the control cells. Moreover, co-treatment
cells with 25, 50, 100 and 200 µg/mL of LRE and 5 mM glutamate revealed significant
protective effects of LRE against cell death in a dose-dependent manner compared to
glutamate-treated cells. Likewise, co-treatment with 0.25 NAC and 5 mM glutamate
significantly increased cell viability to 94.67 ± 1.76% compared to glutamate-treated cells
(Figure 1a). However, LRH and LRC had no effect (Figure 1b,c).
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Figure 1. The protective effect of different concentrations of Lignosus rhinocerus (LR) extracts against glutamate-induced
toxicity in HT22 cells. Viability of untreated control cells was set at 100%. (a) Treatment of cells with an LR ethanol extract
(LRE) and LRE plus glutamate; (b) Treatment of cells with LRC and LRC plus glutamate; (c) Treatment of cells with LRH
and LRH plus glutamate. Values are mean ± SEM of at least three independent runs. Significant differences: ### p < 0.001 vs.
control; *** p < 0.001 vs. glutamate alone.

3.2. Anti-Apoptotic Activity of LR Extracts

In a second step, we investigated the role of apoptosis in glutamate-induced cell death
in HT22 cells. In accordance with the MTT results, we selected concentrations of 100 and
200 µg/mL of LR and 5 mM glutamate. We found that 5 mM glutamate increased the
percentage of apoptotic cells from 10.71 ± 2.91% in controls to 62.64 ± 8.64%. Apoptosis in
LRE- and NAC-treated cells was similar to that of controls. However, co-treatment cells
with LRE and glutamate reduced the percentage of apoptotic cells to 10.18 ± 4.266% and
9.796 ± 4.416% (LRE) and 10.73 ± 4.175% (NAC) (Figure 2a). However, both LRC and LRH
had no effects (Figure 2b).
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Figure 2. Quantitative flow cytometric analysis of the abundance of apoptotic HT22 cells using Annexin V-FITC/PI staining.
Annexin V+/PI– cells are seen in the lower right are in the early stage and annexin V+/PI+ in the upper right quadrant are
late stage. (a) Treatment of cells with glutamate, NAC and LRE alone or in combination with 5 mM glutamate; (b) Treatment
of cells with glutamate, NAC and LRC and LRH alone or in combination with 5 mM glutamate; (c) Representative scatter
plots of the distribution of annexin V and PI-stained cells. Values are mean ± SEM of at least three independent runs. ### p <
0.001 vs. control; *** p < 0.001 vs. glutamate alone.

3.3. Effect of LR Extracts on Mitochondrial Membrane Potential (MMP)

Glutamate reduced the MMP of HT22 cells to 8.00 ± 9.23 compared to control (56.81
± 11.28). Similarly, the cells, treated with CCCP as a positive control for MMP, significantly
decreased the fluorescence intensity to 15.29 ± 7.947. LRE and 0.25 mM NAC alone had
no influence on MMP. However, a co-treatment of the cells with 100 and 200 µg/mL of
LRE and 5 mM glutamate significantly improved the TMRE fluorescence intensity in a
dose-dependent manner compared to glutamate-treated cells at 47.19 ± 9.774, and 58.62 ±
14.36, respectively. Moreover, the co-treatment with NAC had a positive effect (39.95 ±
11.89 (Figure 3a). The co-treatment of cells with LRC or LRH (100, and 200 µg/mL) with
5 mM glutamate showed low fluorescence intensity of TMRE but were not significantly
different from 5 mM glutamate-treated cells (Figure 3b).
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Figure 3. Protective effect of different concentrations of LR extracts on Mitochondrial Membrane Potential (MMP) in HT22
cells. (a) Treatment of cells with LRE, N-acetylcysteine (NAC), carbonylcyanide 3-chlorophenylhydrazone (CCCP) and
LRE, NAC plus glutamate; (b) Treatment of cells with LRH, LRC and LRH, LRC plus glutamate; (c–h) Representative
fluorescence micrographs with TMRE staining using fluorescence microscopy; (c) control group; (d) DMSO group; (e) 5 mM
glutamate group; (f) 100 µg/mL LRE co-treatment group; (g) 200 µg/mL; (h) 0.25 NAC group. Values are mean ± SEM of
at least three independent runs. ## p < 0.01 vs. control; * p < 0.05; ** p < 0.01 vs. glutamate alone.

3.4. Effect of LR Extracts on Intracellular ROS Level

When HT22 cells were treated with 5 mM of glutamate alone, ROS concentrations
increased significantly to 243.9 ± 9.22% (compared to control = 100%). Whereas, co-treatment
of the cells with LRE (100 and 200 µg/mL) and 5 mM glutamate significantly reduced
intracellular ROS accumulation in a dose-dependent manner compared to control to 126.6 ±
8.39%, and 116.1 ± 7.99% (Figure 4a); moreover, 0.25 mM NAC could counteract ROS levels
(106.9 ± 10.33%) (Figure 4a). In contrast, LRC or LRH had no effects (Figure 4b).
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3.5. Effect of LR extracts on Antioxidant Gene Expression

To better understand the antioxidant effects of LRE in previous experiments, we
analysed the expression of genes that are potentially relevant in the antioxidant response
of cells, such as the genes for catalase (CAT), superoxide dismutase (SOD1 and SOD2) and
glutathione peroxidase (GPx).

Glutamate treatment reduced the expression of CAT and GPx in cells. The expression
of CAT, SOD1, SOD2 and GPx was significantly enhanced in cells co-treated with 100 and
200 µg/mL LRE or NAC and 5 mM glutamate (Figure 5a–d).
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3.6. Neuroprotective Effect of LR Extracts Against Aβ-Induced Deficit in Chemotaxis Behavior in
C. elegans

The transgenic CL2355 worms express Aβ in nerve cells (Alzheimer model). As a
physiological response, these nematodes show a reduced ability for chemotaxis. In order
to determine potential neuroprotective effects, we selected three concentrations of LRE (50,
100 and 200 µg/mL) that gave good effects in HT22 cells.

The Chemotaxis Index (CI) increased in a dose-dependent manner when treated with
50, 100 and 200 µg/mL LRE at 0.37 ± 0.04, 0.45 ± 0.03 and 0.49 ± 0.03, respectively,
compared to 0.48 ± 0.06 in the EGCG positive control. However, there was no difference
detected in CI in transgenic CL2122 worms (without Aβ) when treated with LRE and 50
µg/mL EGCG (Figure 6).
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3.7. Neuroprotective Effect of LR Extracts on PolyQ40 Aggregation

The accumulation of PolyQ40 proteins in transgenic AM141 worms was used as a
model for Huntigton. When AM141 worms were treated with 50, 100 and 200 µg/mL LRE,
the number of PolyQ40 aggregates was reduced in a dose-dependent manner to 30.18 ±
0.41, 26.38 ± 0.28 and 14.21 ± 0.36, respectively, compared to the DMSO control (49.40 ±
0.65). Similarly, the worms treated with 50 µg/mL EGCG showed a significantly reduced
PolyQ40 aggregate accumulation (Figure 7).
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Values are mean ± SEM of at least three independent runs. *** p < 0.001 vs. DMSO.

4. Discussion

Neurodegenerative disorders including Alzheimer’s disease (AD), Parkinson’s disease
(PD) and Huntington’s Disease (HD) are related to an increase of intracellular reactive
oxygen species (ROS) accumulation [21–25]. The antioxidants are the first defense to
detoxify ROS. Recently, plants or natural products have been widely studied because most
of them contain phytochemical constituents that are involved in antioxidant activities that
have safe and minimal side effects [26–29]. L. rhinocerus (LR) or Tiger Milk Mushroom
have been used as a folk medicinal mushroom for treatment of asthma [9]. Several studies
have found that the cultivated Tiger Milk Mushroom sclerotia (TM02) performs better
and has a higher content of bioactive compounds than the wild type [11,30]. They found
carbohydrates, proteins and antioxidant proteins [13]. In addition, there are quinones and
flavonoid-like compounds, acting as an antioxidant [14].

Glutamate, an excitatory neurotransmitter, has positive effects on several brain func-
tions such as cognition, memory and learning [31]. However, excess glutamate leads to
glutamate toxicity, and causes neuronal apoptosis [15]. There are two pathways for gluta-
mate toxicity, including receptor-initiated excitotoxicity [32,33] and nonreceptor-mediated
oxidative glutamate toxicity [34]. The latter is linked to glutamate-induced toxicity in HT22
cells because this immortalized cell line lacks the ionotrophic glutamate receptor. High
concentrations of extracellular glutamate (>200 µM) cause glutamate-mediated oxidative
stress by preventing cysteine uptake into cells through a glutamate/cysteine antiporter
followed by depletion of intracellular cysteine, resulting in a glutathione reduction [35],
which leads to ROS accumulation. Excessive ROS could damage cells and intracellular
organelles such as mitochondria and endoplasmic reticulum (ER) in several ways. For
example, ROS interacts with mitochondrial membranes, which leads to lipid peroxidation
and membrane destabilization [36]. These processes alter mitochondrial membrane poten-
tial (MMP), which is a hallmark of mitochondrial dysfunction. MMP is a good target for
assessing in vitro toxicity. A decrease in MMP and inactive mitochondria may be linked
to apoptosis and associated with various diseases including cancer, neurodegenerative
disorder and diabetes [37–41]. As previously reported, glutamate-induced apoptosis is
mediated via the caspase-independent pathway in HT22 cells [42].

In the present study, we report, for the first time to our knowledge, the neuroprotection
of LR extracts against glutamate-induced oxidative stress in HT22 cells and neurotoxic-
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ity in C. elegans. In this cell line, we induced oxidative stress by using 5 mM glutamate
which has been reported to reduce approximately 50% of the cells [19,43]. Interestingly,
we found that only LRE prevented cells from undergoing apoptosis after cotreatment by
using Annexin V/PI straining that interacts strongly and specifically with exposed phos-
phatidylserine (PS), the marker of apoptosis [44]. The protective effect of LRE correlated
with increasing MMP, antioxidant gene expressions (CAT, SOD1, SOD2 and GPx) and
decreasing intracellular ROS accumulation. Studies on the chemical constituents of LR
indicated that bioactive compounds from ethanol extracts performed better than aqueous
extractions because the ethanol extract contained high levels of phenolic compounds and
phospholipids such as linoleic, oleic and palmitic acid which acted as the antioxidants,
whereas aqueous extracts contained a high proportion of polysaccharides, β-glucan and
water-soluble components [45–48]. Some findings reported that aqueous extracts of LR
showed antioxidant properties in vitro including DPPH and ABTS scavenging assay and
contained phenolic compounds [9,13,30]. However, several findings found that mushroom
β-glucan from the aqueous extract is involved in modulating the immune system and in
anti-inflammatory, anti-cancer and antiviral activity [49–51]. Unlike β-glucan in mush-
rooms, β-glucan in barley showed a higher free radical scavenging property than in oats
and yeast [52]. In addition, β-glucan in oats exert indirect antioxidant effects on immune
cells [53]. Therefore, it could be possible that glucan in LRC and LRH are unlikely to be the
major component that was responsible for protecting HT22 cells from glutamate-induced
oxidative stress. Moreover, another possibility was the difference in yields of the extracts in
our study. The yield of the LRE was 10 times lower than that of the LRC and LRH despite
all extracts being applied at a similar concentration. Thus, the active ingredients in aqueous
extracts may be lower than those in ethanolic extracts.

Furthermore, LRE exerted a neuroprotective effect against Aβ-induced deficits in
chemotaxis behavior in C. elegans, leading to an increase in the CI of the CL 2355 trans-
genic strain, containing the human Aβ peptide that is also known as a hallmark of AD [54].
Similarly, LRE also induced a decrease in PolyQ40 aggregation that is related to the neurode-
generative diseases including Huntington’s disease and other polyglutamine diseases [55].
Our findings agree with several previous studies about phenolic compounds that have
been found in plants or natural products and reported their effectiveness in preventing
many diseases including neurodegenerative diseases [19,43,56–67]. Only LRE exerted the
neuroprotective effect both in vitro and in vivo. Our findings suggested that LRE may
be a new candidate for neurodegeneration protection, However, LRE extracts should be
extensively studied for their neuroprotective activity.

5. Conclusions

From three extracts of the Tiger Milk Mushroom, only LRE showed the neuroprotec-
tive effect in hippocampal neuronal cells which is apparently mediated via inhibition of
intracellular ROS accumulation and increases in both MMP and expression of antioxidant
genes. In addition, LRE also had a neuroprotective effect in C. elegans in an Alzheimer
and a Huntington model. However, further studies to identify the bioactive components
and exact mechanism of LRE are required to support their ability for the development of a
neuroprotective supplement in the future.
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