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Simple Summary: The low bioactivity of titanium limits its applications. The biofunctionalization
of its surfaces with certain polymers could improve and accelerate the osseointegration process.
Chitosan is a natural polysaccharide derived from chitin, which has been proposed in biomedical
engineering. This systematic review evaluated in vivo studies with chitosan-coated titanium implants
compared with non-functionalized implants.

Abstract: Chitosan is a natural polysaccharide extracted from the shells of crustaceans that has been
proposed as a scaffold in tissue engineering. Certain studies have proven a greater osseointegration
of titanium surfaces that are functionalized with chitosan. The MEDLINE, CENTRAL, PubMed,
and Web of Science databases were electronically searched for in vivo studies. Seven studies met
the inclusion criteria. Animal models, implant site, chitosan incorporation methods, and methods
of analysis were emphasized. The selected studies were individually discussed regarding the
coatings, osseointegration potential, and suitability of the experimental models used, analyzing
their limitations. We concluded that chitosan-biofunctionalized titanium surfaces have greater
osseointegration capacity that uncoated control titanium alloys.

Keywords: titanium implant; chitosan; coating surface; functionalization

1. Introduction

The biofunctionalization of titanium (Ti) implants aimed at faster osseointegration
has led researchers to develop different surfaces that can provide high osteogenic capac-
ity [1]. Despite the osseointegration capacity of sandblasted, granulated, etched (SLA)
surfaces, compared to machined surfaces, they require periods of 3 to 6 months to achieve
adequate osseointegration [2]. Nevertheless, biofunctionalization using certain peptides,
growth factors, nucleotides, or extracellular matrix proteins could lead to faster and more
predictable osseointegration [3–6].

Chitosan (CS) is a natural polysaccharide derived from the partial deacetylation of
chitin, a structural element found on the exoskeleton of crustaceans, insects, and on the cell
walls of fungi, being the second most abundant natural polysaccharide after cellulose [7].

Its interesting qualities as a biodegradable, non-toxic, biocompatible, and immunotoxicity-
free material, alongside its anticancer, antioxidant, and antimicrobial properties, allow it to be
used for wound healing, as a drug carrier, in the management of obesity, or as a scaffold in
tissue engineering [7–11].

The raw material used for its production is chitin, which conventionally deminer-
alized, deproteinized, decolored, and finally highly purified, can be used for medical
or pharmaceutical purposes. The conversion of chitin to CS is carried out through
enzymatic or chemical deacetylation, the latter being the most common method of
commercial preparation [12–15].
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The poor bioactivity and deficient antibacterial properties of Ti surfaces can lead to
failure and postoperative infections, limiting its applications [16–18], which is why it is
necessary to modify Ti surfaces to improve their bioactivity.

There are currently different improvement methods, such as bioactive coatings and
surface patterns (microstructures, nanostructures, micro-nanostructures); because of these
well-proven benefits, such as the case with bioactive coatings, the use of Ti coatings has
become one of the dominant approaches in the biomedical field to improve the osseointe-
gration of dental implants [19].

The aim of our study was to conduct a systematic review of the scientific literature on
in vivo studies related to the effectiveness of CS for the biofunctionalization of Ti surfaces
aimed at improving osseointegration.

2. Materials and Methods
2.1. Protocol

The studies were selected according to the Preferred Reporting Items for System-
atic Review and Meta-Analysis (PRISMA) guidelines for systematic reviews [20], for-
mulating a specific question based on the PICO (Participants, Intervention, Control,
Outcome) framework:

(P) Participants: Subjects received endosseous implantation;
(I) Intervention: Implants with chitosan incorporation;
(C) Control: Implants without chitosan incorporation;
(O) Outcome: Bone formation around the implant body.

The research question was: “Does the use of chitosan in titanium dental implant
surfaces influence osseointegration?”.

2.2. Data Sources and Search Strategy

The MEDLINE, CENTRAL, PubMed, and Web of Science electronic databases were
searched for findings published in the last 10 years until December 2020. The MeSH terms
(Medical Subject Headings) used in MEDLINE, CENTRAL, and Pudmed data bases were:
“titanium” [MeSH Terms], “implant” [MeSH Terms], “chitosan” [MeSH Terms], “coated
materials, biocompatible” [MeSH Terms], “animals” [MeSH Terms]; the Boolean operator
AND was used to refine the search. In Web of Science, the search terms were: “titanium
implants”, “chitosan functionalized surface”, “chitosan coating surfaces”, “in vivo”; the
Boolean operators AND, OR were used to refine the search (Table S1).

2.3. Inclusion and Exclusion Criteria

The inclusion criteria for the study selection were:

1. In vivo studies;
2. Studies where at least one layer of CS was used to coat the Ti;
3. Studies where bone growth or the formation of a biological seal around the Ti implant

surface coated with CS alone or in combination with other products or molecules
was assessed;

4. Studies on endosseous implants;
5. Studies that included non-modified animals (osteoporotics, diabetics . . . ).

The exclusion criteria for the study selection were:

1. In vitro studies;
2. Narrative and systematic reviews;
3. Studies that did not use endosseous implants, duplicates, and informatives.

2.4. Data Extraction and Analysis

Two independent reviewers (N.L-V., A.L-V.) extracted data from the full texts of the
selected articles, including general information, animal parameters (total number, species),
chitosan incorporation methods, evaluation moments, analysis methods, conclusions, and
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implant parameters (total number, length, diameter, shape, location, and characteristics
of the implant surface and control) The uncertainty in determining the eligibility of the
studies was resolved by discussion between the two reviewers.

2.5. Risk of Bias (RoB) of the Selected Articles

SYRCLE’s risk of bias tool (an adapted version of the Cochrane RoB tool with specific
biases in animal studies) was used to assess the methodology of the scientific evidence in
all the selected studies [21].

2.6. Quality of the Reports in the Selected Articles

This assessment involved the modified guidelines provided by Animal Research:
Reporting of In Vivo Experiments (ARRIVE) [22], with a total of 23 items. Each item was
rated by the reviewers N.L-V. and A.L-V. with scores of 0 (not reported) or 1 (reported),
with an overall inventory of all the studies included (Table 1).

Table 1. Checklist of Animal Research: Reporting of In Vivo Experiments (ARRIVE) criteria reported by the included studies.

Studies Wang et al.
2019 [23]

Song et al.
2018 [24]

Chen et al.
2017 [25]

Bhattarai et al.
2015 (a) [26]

Bhattarai et al.
2015 (b) [27]

Marsich et al.
2013 [28]

Travan et al.
2012 [29]

1. Title 1 1 1 1 1 1 1

Abstract

2. Species 1 1 1 1 1 1 1

3. Key finding 1 1 1 1 1 1 1

Introduction

4. Background 1 1 1 1 1 1 1

5. Reasons for animal
models 0 0 0 0 0 0 0

6. Objectives 1 1 1 1 1 1 1

Methods

7. Ethical statement 1 1 1 1 1 1 1

8. Study design 1 1 1 1 1 1 1

9. Experimental
procedures 1 1 1 1 1 1 1

10. Experimental
animals 1 1 1 1 1 1 1

11. Accommodation
and handling of

animals
1 0 0 1 1 0 0

12. Sample size 1 1 1 1 1 1 1

13. Assignment of
animals to

experimental groups
0 0 0 0 0 0 0

14. Anesthesia 1 1 1 1 1 1 1

15. Statistical methods 1 1 1 1 1 1 1

Results

16. Experimental
results 1 1 1 1 1 1 1

17. Results and
estimation 1 1 1 1 1 1 1

Discussion

18. Interpretation and
scientific implications 1 1 1 1 1 1 1

19. 3Rs reported 0 0 0 0 0 0 0

20. Adverse events 0 0 0 0 0 0 0

21. Study limitations 0 0 0 0 1 0 0

22. Generaliza-
tion/applicability 1 0 1 0 1 1 1

23. Funding 1 1 1 1 0 1 1

TOTAL, SCORE 18 16 17 17 18 17 17

Mode Value: 17.14 ± 0.63. Each item was judged as “0” (not reported) or “1” (reported). The total score for each of the included studies
was also recorded.
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3. Results
3.1. Characteristics of the Studies

From 2010 until December 2020, a total of 41 studies were identified and subsequently
assessed by the reviewers. After an initial screening, 19 duplicate studies were removed. A
second screening led to the removal of 15 studies that were regarded as inadequate because
they did not clearly meet the inclusion criteria (Figure 1, Flowchart). Tables 2–4 provide a
general description of the details of the studies.

Table 2. Characteristics of included studies.

Studies Animal
Model (n)

Location of Implant
Placement Follow-Up Analysis Methods Conclusions

Wang et al.
2019 [23]

Rat model
(60)

Mesial (root area of
upper right first

molar)
4 weeks

- H&E staining.
-

immunofluorescence
staining

The plasmid pLAMA3-CM released
from a chitosan/collagen coating was
used for adhesion and peri-implant
tissue attachment to titanium
implants by functioning as a
transmucosal barrier.

Song et al.
2018 [24]

Rat model
(20) Femur (midshafts) 2 weeks

- Fluorescence
images.

- Live/dead staining
of cells on different
surfaces.

- Confocal laser
scanning
microscopy.

The HA/CS multilayer alone
improved surface hydrophilicity.
Phase-transited lysozyme nanofilm
modulated materials and was applied
for surface modification of implants.

Chen et al.
2017 [25]

New Zealand
white rabbits

(4)
Femora condyles 4 and 12 weeks

- µ-CT analysis
- Histochemistry
- The percentage of

bone-to-implant
contact was
measured with
H&E staining
images.

The multilayer coated Ti implants
were capable of promoting the
proliferation, osteogenesis
differentiation, and
osteogenesis-related gene expression
of osteoblasts and had great potential
for clinical implementation in vivo
with enhanced osteogenesis at the
interface of the bone and implant.

Bhattarai et al.
(a) 2015 [26]

Rat model
(10)

Mandibles (lower
first molar area) 4 weeks

- µ-CT analysis
- Immunohistoche-
- mistry, hematoxylin

and eosin, and
tartrate resistance
acid phosphatase
staining.

The application of CS-GNP/GFBP-3
enhanced bone remodeling around Ti
implant surfaces by down-regulating
osteoclastogenesis and
up-regulating osteogenesis.

Bhattarai et al.
(b) 2015 [27]

Rat model
(24)

Mandibles (lower
first molar area)

1, 2, 3, and
6 weeks

- µ-CT analysis.
- Histological

evaluation.

Local administration of
CS-GNP/PPAR decreases
implant-induced inflammation and
enhances the expression levels of
osteogenic molecules around the
implantation site and helps to
accelerate bone formation and
bone–implant integration.

Marsich et al.
2013 [28] Minipig model Femur 8 weeks

- Histological:
Sections were cut
along the implant
axis and stained
with the van Gieson
method; Olympus
BX51TF microscope
imaging, Olympus
Corp., Tokyo, Japan.

- Histomorphometric:
The analysis
consisted of a
quantitative
evaluation of the
%BIC in the
cortical area.

It is assumed that the addition of nAg
to the Chitlac coating may have
influenced the peri-implant bone
response, which was manifested in
the absence of lamellar
peri-implant bone.
The mechanisms are not clear and
need further investigation.
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Table 2. Cont.

Studies Animal
Model (n)

Location of Implant
Placement Follow-Up Analysis Methods Conclusions

Travan et al.
[29] 2012 Minipig model Femur 8 weeks

- Histological:
Sections were cut
along the implant
axis and stained
with the van Gieson
method; Olympus
BX51TF microscope
imaging, Olympus
Corp., Tokyo, Japan.

- Histomorphometric:
- A quantitative

assessment of the
direct (BIC) was
performed.

For the Chitlac implants, the total BIC
was 72% (min 59%, max 80%).
Histomorphometric analysis:
Chitlac-TS (nonroughened surface),
72% of the implant interface was in
close contact with the cortical bone.

H&E, Hematoxylin&Eosin; Ti, Titanium; GNP, Gold Nanoparticles; GFBP, Growth Factor Binding Protein; PPAR, Peroxisome Proliferator
Activated Receptor; BIC, Bone-to-Implant-Contact; nAg, Silver Nanoparticles; Chitlac, lactose derivative of a highly deacetylated chitosan;
TS, Unmodified Thermoset; HA, Hyaluronic Acid.

Table 3. Characteristics of implants.

Studies Implants
(n)

Implant Dimensions,
D(Ø) × L (mm) Implant Shape Chitosan Incorporation

(See Figure 2)
CS-Modified Implant

Surface Characteristics

Wang et al. [23] 16 2 Ø × L 4 Screw NR

A CS coating was designed
to release plasmid DNA
and the codeposition of

type IV collagen was
applied with the purpose of
synergistically promoting
cellular adhesion and new

tissue attachment to the
titanium implants.

Song et al. [24] 20 2 Ø × L 2 Ti rods

By immersion in CS
solution dissolving 0.1%

CS in a 1% acetic
acid solution.

Nanofilm coated with
multilayer of HA-CS.

Chen et al. [25] 16 3 Ø × L 13 Ti rods

CS solution (3 mg mL−1)
was prepared with HCl

solution (pH 5.0). First, a
thin layer of CS was
deposited on the Ti

surface, followed by three
gel–CS bilayers and one

HA layer.

Three gel–CS bilayers.

Bhattarai et al. (a) [26] 10 0.85 Ø × 4.5 Screw

For coating with
CS-GNP–IGFBP-3 the

implants were immersed
10 times in a

nanoparticle–DNA
solution and frozen at

−40 ◦C.

NR

Bhattarai et al. (b) [27] 24 0.85 Ø × 4.5 Screw

The
CS-GNP–PPAR-coated

implants were immersed
in a nanoparticle–DNA
solution and frozen at

−240 ◦C.

NR

Marsich et al. [28] 6 3.6–5 Ø × 8 Truncated cone Coated with Chitlac or
Chitlac–nAg. NR

Travan et al. [29] 3.6–5 Ø × 8 Truncated cone Coated with Chitlac or
Chitlac–TS. NR

NR, Not Reported.
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Table 4. Evaluation of tissues.

Studies, Year Soft Tissue Bone Formation

Wang et al. 2019 [23] Inform through images Inform through images

Song et al. 2018 [24] NR

- Fluorescence images of the rat femora after 2 weeks of
implant placement.

- Bone histology at 2 weeks after implant placement.
- Histological analysis of the decalcification samples around Ti.

Chen et al. 2017 [25] NR

- Bone volume 2 and 4 weeks
- Bone-to-implant binding 12 weeks.
- New bone formation (area percentage) 2 and 4 weeks.
- %BIC2 and 4 weeks.

Bhattarai et al. 2015 (a) [26] NR
- Bone volume 4 weeks.
- Supporting bone around implants.

Bhattarai et al. 2015 (b) [27] NR Bone formation around the implant body (inform through images).

Marsich et al. 2013 [28] NR BIC for Chitlac–nAg 26% (minimum 22%, maximum 27%)

Travan et al. 2012 [29] NR

Chitlac-TS implants showed direct bone–implant contact with a
minimal soft tissue interlayer, indicating good biological
compatibility of the material.
For the Chitlac-TS implants, the total BIC was 72% (minimum 59%,
maximum 80%)

BIC, Bone-to-Implant Contact; Chitlac-TS, lactose derivative of a highly deacetylated chitosan with unmodified thermoset; Chitlac–nAg,
Chitlac–lactose–silver nanoparticles; TS, Thermoset; NR, Not Reported.
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3.2. Risk of Bias and Quality Assessment of the Animal Studies Included

The risk of bias assessment results for the animal studies are shown in Figure 3.
Although allocation to blinding was mentioned in several articles, the lack of information
on the method used resulted in a high and unclear risk of bias for most items. Table 1
shows the ARRIVE guidelines checklist for the animal studies included. The mean score
for the studies was 17.14 ± 0.63. All of the studies reported correctly on the title, abstract,
introduction, ethical statement, species, surgical procedure, outcomes assessment, and
statistical analysis. Items 5 (reasons for animal models), 13 (assignment of animals to
experimental groups), 19 (3Rs, Replace, Reduce and Refine.) and 20 (adverse events) were
not reported in any of the included studies; only the study by Bhattarai et al. (b) reported
limitations in terms of clinical applicability.
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4. Discussion

Over time, surface modifications with greater osseoinductive capacity have been
developed, with the purpose of overcoming the limitations of traditional Ti surfaces [18].

The most common strategy is the modification of Ti surfaces using biofunctional
molecules. This biofunctionalization method involves the deposition of organic and in-
organic chemical compounds on the surface with the aim of improving bone-to-implant
contact, and thus obtaining an ideal surface capable of full osseointegration capacity and
excellent biocompatibility [30,31]. However, certain treatments that are used on Ti surfaces
may alter their properties and trigger unknown reactions to a foreign body, affecting the
responses of the hard and soft tissues in contact with it; this aspect is largely unknown
because of the reduced number of in vivo studies [32].

Although CS is a product that has awakened great interest in the area of biomedical
engineering, it has poor solubility in water, which limits its use in living systems [33],
where acid solutions such as acetic acid are to be used instead [24,34,35].
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All the studies included in our systematic review [23–29] included an in vitro and an
in vivo experimental part using different coatings on Ti surfaces, with CS being among them.

Marsich and colleagues [28] and Travan and colleagues [29] used lactose-modified
chitosan (Chitlac) as a coating for implants, using Ti alloy micro-corrugated implants
(Ti6Al4V) as controls in an experimental minipig femur model, reporting the coating’s
anti-inflammatory and anti-infective benefits. In this regard, certain authors have recently
found evidence of the anti-inflammatory and antioxidant effects of Chitlac in combination
with hyaluronic acid on human chondrocytes [36]. Wang and colleagues [23] used a
rat experimental model to assess soft tissue healing around CS–collagen-modified Ti
surfaces. Soft tissue sealing of the surfaces prevented bacterial invasion, and therefore
early dental implant failure [37]. Chen and colleagues [25] assessed the antioxidant and
osteogenic capacity of a multilayer surface on Ti substrates (CS–catechol, gelatin, and
hydroxyapatite), reporting that multilayered Ti implants were able to promote osteogenesis
and osteoblast-related gene expression, and also had remarkable potential to improve the
bone–implant interface in vivo. The findings of Georgopoulou and colleagues and Park,
Oryan, and colleagues [38–40] were consistent with these results, indicating that using a CS–
gelatin multicoating on Ti surfaces would increase osteogenic gene expression, providing a
promising strategy for bone tissue engineering. Song and colleagues [24] used rat femurs
to compare Ti cylinders with others coated with CS, HA (Hyaluronic Acid), and a flavonoid
(icariine), reporting higher rates of native bone in the group treated with CS–HA–icariine
2 weeks after implant placement. Certain studies have highlighted the osseoinductive
properties of the CS–HA combination due to its favorable bioactive characteristics and
mechanical properties to structurally and compositionally reproduce bone tissue [41,42].
Finally, Battarai and colleagues [26,27] conducted two studies based on rat mandibles, both
of them assessing Ti coated with gold nanoparticles. The first [26] added a second coating
with growth factors and the second [27] with peroxisome proliferator-activated receptor.
Both studies reported greater bone formation around the CS-coated implants as compared
to the control Ti implants.

Although all the studies included in our review reported favorable results regarding
bone growth around Ti implants with one coating of CS [29] or in combination with other
coatings [23–28], it should be noted that there are a series of limitations concerning the
included studies.

Biomedical researchers use different procedures, which include cell tissue and cultures,
experimental animal models, computer simulations, and clinical studies, aimed at mitigat-
ing human inconveniences. They all have their advantages and disadvantages, although
studies based on animal models have less of the latter than in vitro studies. Some of these
shortcomings are the differences in biokinetic parameters or the extrapolation of results to
humans; the absence of biokinetics in in vitro methods may lead to misinterpretation of
the results [43].

The studies included in our review used both in vivo and in vitro testing; the latter
method was not considered because most of the studies involved monoculture research
carried out under static growth conditions, bearing no similarity to the conditions of dental
implants in humans, which are subject to contact with fluids such as saliva in the oral
cavity, making it very difficult to extrapolate the results to the biology of the human body
and potentially leading to misleading conclusions. Another significant limitation of in vitro
studies is protein concentration in the fluids created in the laboratory. The use of a single
host protein or a small selection of them never reflects in vivo oral conditions, which are
highly complex [44,45].

Regarding the experimental animal models used in the studies included in our sys-
tematic review, 5 studies [23–27] used rodents and two used minipig models [28,29]. In this
respect, it should be noted that neither the rodents (rabbits, rats) nor the chosen implant
sites (tibia, femur, mandible, etc.) are suitable models to be extrapolated to humans, since
cortical remodeling is absent and they stop growing later than other mammals; pigs would
perhaps be the most similar animal in terms of bone composition and remodeling [46,47].
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On the other hand, it would have been desirable to compare experimental coatings
with traditional Ti dental implant surfaces (e.g., SLA), with all intraosseous devices being
made of Ti of the same purity; some studies used pure Ti [23,24], while others used Ti
alloys (Ti6Al4V) [28,29].

Likewise, all the studies included in our review had serious limitations in terms of the
number, quality, and methodology of the in vivo studies; precisely, because of the paucity
of studies and the complexity of the data they provide, a complementary meta-analysis
could not be conducted.

5. Conclusions

Bearing in mind the limitations mentioned above, it seems that Ti dental implants
coated with CS may have greater osseointegration capacity. It is likely to become a com-
mercial option for the biofunctionalization of dental implants in the future. However,
confirmation of this possibility would require well-designed clinical research using broad
samples, standardized protocols, and long-term monitoring to support the use of CS as
a coating for Ti implants for osteoinduction purposes, and thus to provide surfaces that
ensure rapid osseointegration.

Supplementary Materials: The following are available online at https://www.mdpi.com/2079-773
7/10/2/102/s1, Table S1. Database search terms.
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Abbreviations

Ti Titanium
SLA Sandblasted, Large-Grit, Acid-Etched
HA Hyaluronic Acid
CS Chitosan
CHITLAC Chitosan–Lactose
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GNP Gold Nanoparticles
GFBP Growth Factor Binding Protein
PPAR Peroxisome Proliferator-Activated Receptor
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