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6 Maria Sklodowska-Curie Bialystok Oncology Center, 15-027 Bialystok, Poland; lukasz.szarpak@gmail.com
7 Maria Sklodowska-Curie Medical Academy in Warsaw, 03-411 Warsaw, Poland
* Correspondence: agnieszka.kaplon@gmail.com

Simple Summary: A heart attack may lead to the remodelling of the cardiac muscle, which negatively
affects patient’s prognosis. At present, the mechanisms of cardiac remodelling remain unclear. In
patients with heart attack, many body cells become activated and release small particles, called
extracellular vesicles, which can either aggravate cardiac injury, or contribute to healing of heart
muscle. In our study, we hypothesized that the concentrations of these small particles in plasma
allow to determine which patients will experience remodelling of the cardiac muscle after the heart
attach. We found that concentrations of extracellular vesicles from endothelial cells, erythrocytes
and platelets, measured directly the heart attack, were lower in patients who developed cardiac
remodelling 6 months later, compared to patients who had no remodelling. Vesicles from endothelial
cells and erythrocytes allowed to determine remodelling independently of other clinical features.
Hence, decreased concentrations of these vesicles may on one hand be a sign of inappropriate cardiac
repair mechanisms, and on the other hand may allow to identify patients, who will develop cardiac
remodelling after the heart attack.

Abstract: Background, the mechanisms underlying left ventricular remodelling (LVR) after acute
myocardial infarction (AMI) remain obscure. In the course of AMI, blood cells and endothelial cells
release extracellular vesicles (EVs). We hypothesized that changes in EV concentrations after AMI may
underlie LVR. Methods, plasma concentrations of EVs from endothelial cells (CD146+), erythrocytes
(CD235a+), leukocytes (CD45+), platelets (CD61+), activated platelets (P-selectin+), and EVs exposing
phosphatidylserine after AMI were determined by flow cytometry in 55 patients with the first AMI.
LVR was defined as an increase in left ventricular end-diastolic volume by 20% at 6 months after AMI,
compared to baseline. Results, baseline concentrations of EVs from endothelial cells, erythrocytes
and platelets were lower in patients who developed LVR (p ≤ 0.02 for all). Concentrations of EVs
from endothelial cells and erythrocytes were independent LVR predictors (OR 8.2, CI 1.3–54.2 and OR
17.8, CI 2.3–138.6, respectively) in multivariate analysis. Combining the three EV subtypes allowed to
predict LVR with 83% sensitivity and 87% specificity. Conclusions, decreased plasma concentrations
of EVs from endothelial cells, erythrocytes and platelets predict LVR after AMI. Since EV release EVs
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contributes to cellular homeostasis by waste removal, decreased concentrations of EVs may indicate
dysfunctional cardiac homeostasis after AMI, thus promoting LVR.

Keywords: heart failure; left-ventricular remodelling; acute myocardial infarction; extracellular
vesicles; flow cytometry

1. Introduction

Coronary artery disease (CAD) is a major public health problem, affecting around
126 million individuals worldwide [1]. Improvements in the pharmacological and in-
terventional treatment of CAD, including primary percutaneous interventions (PCI) for
acute myocardial infarction (AMI), decreased the short-term mortality rate after AMI [2,3].
Consequently, long-term complications including heart failure (HF) have become a leading
cause of death in CAD [4].

After AMI, myocardial necrosis leads to formation of scar tissue. The structural and
functional geometrical changes of the cardiac muscle are termed post-infarct left ventricular
remodelling (LVR) [5]. Echocardiographic evaluation of LVR includes measurements of
left ventricular end-diastolic and end-systolic volumes (LVEDV, LVESV), left ventricle
ejection fraction (EF), and 3D assessment of left ventricle sphericity index [6]. The most
widely used definition of LVR, applied also in this study, is a >20% increase in LVEDV
at six months after AMI [7]. About 30% of the patients after anterior AMI and 17%
after non-anterior AMI develop LVR, which increases the risk of HF and the mortality
rate [7]. The pathophysiological mechanisms underlying LVR after AMI remain obscure. To
prevent development of LVR in patients after AMI, beta-blockers, angiotensin-converting
enzyme inhibitors or angiotensin receptor blockers and aldosterone antagonists are used [8].
However, since there are no reliable parameters to identify patients who will develop post-
infarct LVR, the therapy cannot be tailored to the individual patients’ need. Hence, new
pathophysiological insights and biomarkers for LVR after AMI are urgently required.
Extracellular vesicles (EVs) are released by blood and vascular endothelial cells into the
blood [9]. EVs are thought to transport biomolecules, including cytokines, signalling
proteins and nucleic acids, between cells, and therefore are believed to be involved in
intercellular communication [10]. Depending on the molecular cargo, EVs can affect both
physiological and pathological processes, such as immune responses, angiogenesis and
wound healing [11]. Due to the multiple roles of EVs in health and disease, EVs may
provide new and potentially non-invasive biomarkers [12]. Therefore, we hypothesized
that (i) the concentrations of EVs evaluated after AMI differ between patients with and
without LVR after 6 months, and, if so, (ii) the changes in EV concentrations may underlie
LVR after AMI.

We compared the concentrations of EVs after AMI between patients who developed
LVR at 6 months, and those who did not, and evaluated the predictive value of EVs for LVR.

2. Materials and Methods
2.1. Study Design

We prospectively evaluated the predictive value of EVs for LVR in all patients partici-
pating in the Antiplatelet Therapy Effect on Extracellular Vesicles (AFFECT EV) Echocar-
diography Substudy [13]. AFFECT EV was an investigator-initiated, prospective study
conducted at the 1st Chair and Department of Cardiology, Medical University of War-
saw, Poland in collaboration with the Vesicle Observation Centre, Amsterdam University
Medical Centers (UMC), The Netherlands [14]. The study protocol, designed in compli-
ance with the Declaration of Helsinki, was approved by the Ethics Committee of Medical
University of Warsaw, approval number KB/112/2016, registered in the Clinical Trials
database as NCT02931045, and published previously [13]. All participants provided written
informed consent.
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2.2. Study Participants

Study inclusion and exclusion criteria are listed in Table S1. Patients were eligible
for enrolment if they were (a) were admitted to the hospital due to the first ST-segment
elevation of acute myocardial infarction (STEMI) or non-STEMI (NSTEMI) with an onset
of symptoms during the previous 24 h, and (b) underwent PCI with stent implantation.
STEMI was defined as persistent ST-segment elevation of at least 0.1 mV in at least two
contiguous electrocardiography leads, or a new left bundle-branch block [15]. NSTEMI was
diagnosed in patients presenting with typical anginal chest pain along with an elevation
of cardiac troponin concentration in the peripheral blood and ST-segment changes (ST
depression, transient ST elevation, T-wave changes) on electrocardiogram [16].

2.3. Treatment

All patients received standard treatment after AMI according to the guidelines, in-
cluding double antiplatelet therapy, β-blocker, angiotensin-converting enzyme inhibitor
or angiotensin receptor blocker, aldosterone receptor antagonist and protein pump in-
hibitor [15,16].

2.4. Clinical Data Collection

Data collected at baseline included demographics (age, gender), body mass index,
initial diagnosis and cardiovascular risk factors, including arterial hypertension, diabetes,
hyperlipidaemia, and smoking. In addition, routine laboratory parameters were recorded.
Each patient underwent transthoracic echocardiography within 24 h after AMI and at
6-month follow-up visit. LVR was defined as an increase in LVEDV by 20% at 6 months
after AMI, compared to baseline echocardiography.

2.5. Blood Collection and Handling

Peripheral venous blood samples were collected from fasting patients at a single
time-point (within 24 h after AMI). With fasting, we mean ≥8 h after last consumption.
Blood was collected and processed according to the recent guidelines to study EVs [17].
Briefly, blood was collected in 10 mL 0.109 mol/L citrated plastic tubes (S-Monovette,
Sarstedt) via antecubital vein puncture using a 19-gauge needle, without tourniquet. The
first 2 mL were discarded to avoid pre-activation of platelets. Within maximum 15 min
from blood collection, platelet-depleted plasma was prepared by double centrifugation
using a Rotina 380 R equipped with a swing-out rotor and a radius of 155 mm (Hettich
Zentrifugen, Tuttlingen, Germany). The centrifugation parameters were: 2500 g, 15 min,
20 ◦C, acceleration speed 1, no brake. The first centrifugation step was done with 10 mL
whole blood collection tubes. Supernatant was collected 10 mm above the buffy coat. The
second centrifugation step was done with 3.5 mL plasma in 15 mL polypropylene centrifuge
tubes (Greiner Bio-One B.V). Supernatant (platelet-depleted plasma) was collected 5 mm
above the buffy coat, transferred into 5 mL polypropylene centrifuge tubes (Greiner Bio-
One B.V., Vilvoorde, Belgium), mixed by pipetting, transferred to 1.5 mL low-protein
binding Eppendorfs (Thermo Fisher Scientific, MA, USA), and stored in −80 ◦C until
analyzed. Prior to analysis, samples were thawed for 1 min in a water bath at 37 ◦C.

2.6. Flow Cytometry

Concentration of EVs were measured by flow cytometry (A60-Micro, Apogee Flow
Systems, Hertfordshire, UK). We diluted samples 2-fold to 1500-fold in in citrated (0.32%)
phosphate-buffered saline (PBS) to achieve a count rate of less than 3000 events/s to
prevent swarm detection [18]. Diluted samples were measured during 120 s at a flow
rate of 3.01 µL per min. The trigger threshold was set at 14 arbitrary units of the side
scatter detector, which corresponds to a side scattering cross section of 10 nm2. The
reported concentrations describe the number of particles (a) that exceed the side scatter
threshold, (b) have a diameter >200 nm as determined by Flow-SR [19], (c) have a refractive
index <1.42 to exclude positively labelled chylomicrons [20], and (d) that are positive
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at the fluorescence detector(s) corresponding to the used label(s), per mL of platelet-
depleted plasma. We measured concentrations of EVs from endothelial cells (CD146+),
erythrocytes (CD235a+), leukocytes (CD45+), platelets (CD61+), activated platelets (P-
selectin+), and EVs exposing phosphatidylserine (PS). Although a generic EV marker is
lacking, proteins binding PS are commonly used to stain ~50% of all plasma EVs [21]. Hence,
we used lactadherin to stain all (PS-exposing) plasma EVs. To improve the reproducibility
of our EV flow cytometry experiments, we (a) applied the new reporting framework
for the standardized reporting of EV flow cytometry experiments (MIFlowCyt-EV) [22],
(b) calibrated all detectors, (c) determined the EV diameter and refractive index by the
flow cytometry scatter ratio (Flow-SR) [19], and (d) applied custom-built software to fully
automate data calibration and processing.

2.7. End-Points

The primary end-point was the difference between the concentrations of EVs after
AMI in patients with and without LVR at 6 months. The secondary end-point was the
predictive value of EVs for LVR at 6 months.

2.8. Statistical Analysis

The power calculation was based on the systematic review with meta-analysis of seven
clinical studies, which demonstrated that plasma concentrations of EVs are two-fold higher
in patients with acute coronary syndrome, compared to healthy controls [23]. About 30%
of patients after AMI develops LVR. Sample size was calculated based on the following
assumptions: (i) significance level for two-sided testing 0.05, (ii) test power 0.9, (iii) standard
deviation (SD) +/− 1.5, (iv) estimated difference in mean EV concentrations between the
group with and without AMI 2. Based on the above assumptions, the study should include
at least 13 patients who will develop LVR (25% of the study group). Based on this sample
size estimation, a total of 52 patients should be enrolled in the study. Assuming 10% of
patients lost to follow-up, 60 patients were eventually included in the study.

Statistical analysis was conducted using IBM SPSS Statistics, version 24.0 (IBM). Cate-
gorical variables were presented as number and percentage and compared using Fischer’s
exact test. A Shapiro–Wilk test was used to assess normal distribution of continuous vari-
ables. Continuous variables were presented as mean and SD or median with interquartile
range and compared using an unpaired t-test or Mann-Whitney U test. The diagnostic
ability of EVs to discriminate between patients with and without LVR and the cut-offs were
calculated using a receiver operating characteristic (ROC) curve. Logistic regression model
incorporating the subtypes of EVs with significant sensitivity and specificity (area under
the ROC curve, AUC) and clinical characteristics were used to determine the best model
for LVR prediction. Mortality and other adverse events were reported descriptively. A
p-value below 0.05 was considered significant.

3. Results

The study flow and exclusion and inclusion overview are shown in Figure 1. Between
January 2017 and June 2018, 60 patients were enrolled, and 55 patients were included in
the final analysis (5 patients withdrew consent and did not attend the follow-up visit at
6 months). Patient characteristics are shown in Table 1. Twelve patients developed LVR
at 6 months (22%). Cardiovascular risk factors and laboratory characteristics including
haemoglobin, platelet count, troponin-I and C-reactive protein concentration at baseline
were comparable between the groups. STEMI occurred more frequently in patients who de-
veloped LVR compared to patients without LVR, but this difference did not reach statistical
significance (92% vs. 72%, p = 0.26). Echocardiography parameters and pharmacotherapy
were comparable between the groups. All patients received dual antiplatelet therapy, all
patients except for one received atorvastatin, and more than 80% of patients received a
β-blocker, an angiotensin-converting enzyme inhibitor, and a proton pump inhibitor. At
6 months, LVEDV and LVESV were larger with patients with LVR, compared to those
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without LVR (p = 0.03, p = 0.04, respectively). The EF was comparable in both groups.
There were no deaths and only one recurrent hospitalization due to HF during the study in
a patient from the LVR group.
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Table 1. Main characteristics of patients with and without left ventricular remodelling (LVR) at 6 months after acute
myocardial infarction.

Characteristic LVR (n = 12) No LVR (n = 43) p-Value

N SD, range, % N SD, range, %

Age, years–mean ± SD 59.5 10.3 65.6 9.3 0.06

Male gender–number (%) 8 67 32 74 0.72

BMI–median (IQR) 28.1 25.5–29.9 27.9 25.4–31.8 0.73

Diagnosis at
admission–number (%)

STEMI 11 92 31 72 0.26

Anterior AMI 2 17 8 19 1.00

Cardiovascular risk factors–number (%)

Arterial hypertension 8 67 26 60 0.75

Diabetes mellitus 3 35 7 16 0.67

Dyslipidaemia 8 67 29 67 1.00

Smoking 5 41 18 41 1.00

Laboratory characteristics at baseline

Creatinine,
mg/dL–median (IQR) 0.91 0.73–1.02 0.95 0.81–1.05 0.39

C-reactive protein–median
(IQR) 3.75 1.73–6.08 3.00 1.7–5.9 0.16

Haemoglobin,
g/dL–mean ± SD 14.0 1.3 13.9 1.3 0.89

INR–mean ± SD 1.14 0.16 1.07 0.08 0.06

NT-proBNP–median (IQR) 696 386–1936 888 192–1978 0.49
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Table 1. Cont.

Characteristic LVR (n = 12) No LVR (n = 43) p-Value

Platelet count,
103/µL–mean (SD) 262.3 75.4 235.6 69.2 0.27

Troponin I,
ng/mL–median (IQR) 16.2 5.2–42.6 14.7 2.5–35.5 0.46

Echocardiography at
baseline

LVEDV, mL–median (IQR) 104 92–120 105 95–123 0.58

LVESV, mL–median (IQR) 41 38–52 41 40–65 0.38

LVEF, mL–median (IQR) 53 47-57 51 45–54 0.43

Echocardiography at
6 months

LVEDV, mL–median (IQR) 107 97–126 83 62–93 0.03

LVESV, mL–median (IQR) 59 43–63 57 27–48 0.04

LVEF, mL–median (IQR) 56 50–58 60 52–63 0.10

Pharmacotherapy at discharge–number (%)

Aspirin 12 100 43 100 1.00

P2Y12 inhibitor 12 100 43 100 1.00

Atorvastatin 11 92 42 98 0.39

β-blocker 10 83 39 90 0.60

ACE-inhibitor or ARB 11 92 41 95 0.53

Aldosterone receptor
antagonist 3 25 11 26 1.00

Proton pump inhibitor 11 92 40 93 1.00

Pharmacotherapy at follow-up–number (%)

Aspirin 12 100 43 100 1.00

P2Y12 inhibitor 12 92 43 100 1.00

Atorvastatin 11 92 41 95 0.53

β-blocker 10 83 38 88 0.64

ACE-inhibitor or ARB 11 92 42 98 0.40

Aldosterone receptor
antagonist 4 33 11 26 0.72

Proton pump inhibitor 10 83 41 95 0.20

Abbreviations: ACE: angiotensin-converting enzyme; ARB: angiotensin-receptor blockers; BMI: body mass index, weight in kilograms
divided by square of the height in meters; CK-MB: creatine kinase muscle-brain isoenzyme; CVD: cardiovascular disease; GLS: global
longitudinal strain; INR: international normalized ratio; IQR: interquartile range; LDL-C: low-density lipoprotein-cholesterol; LVEDD: left
ventricle end-diastolic diameter; LVEDV: left ventricle end-diastolic volume; LVESV: left ventricle end-systolic volume; LVEF: left ventricle
ejection fraction; NSTEMI: non-ST-segment elevation myocardial infarction; NT-proBNP: N-terminal pro-B-type natriuretic peptide; SD:
standard deviation; STEMI: ST-segment elevation myocardial infarction.

Left-Ventricular Remodelling

Figure 2 shows the concentrations of EVs after AMI in patients with and without LVR
at 6 months. The concentrations of EVs from endothelial cells (Figure 2A), erythrocytes
(Figure 2C) and platelets (Figure 2E) were lower in patients who developed LVR, compared
to those who did not develop LVR (p ≤ 0.02 for all), and discriminated between these two
groups of patients (area under ROC curve [AUC] ≥0.74, p ≤ 0.02 for all) in univariate anal-
ysis (Figure 2B,D,F). The statistical estimates for prediction of LVR by EVs from endothelial
cells, erythrocytes and platelets, including the cut-off values determined based on the ROC
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curves, are showed in Table S2. The concentrations of other EVs, i.e., EVs from activated
platelets, leukocytes and exposing PS, were comparable between the groups and did not
predict LVR (Figure S1).
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Because the concentrations of EVs from endothelial cells, erythrocytes and platelets
discriminated between patients with and without LVR when measured separately, we
incorporated these EV subtypes in a logistic regression model along with clinical data.
To select the clinical data which should be incorporated in the model, we compared
characteristics presented in Table S1 between patients with high and low concentrations of
(i) endothelial cells, (ii) erythrocyte EVs and (iii) platelets EVs, based on the determined cut-
off values. Patients with low endothelial EV concentrations (<3.64 × 105 per ml) had higher
INR (p = 0.024), compared to patients with high endothelial EV concentrations. Patients
with low erythrocyte EV concentration (<1.67 × 107 per ml) had higher creatinine (p =
0.041), compared to patients with high erythrocyte EV concentrations. Finally, patients with
low platelet EV concentrations (<1.68 × 108 per ml) had lower platelet count (p = 0.009),
lower LDL-C concentration (p = 0.004) and higher prevalence of hypertension (p = 0.013)
and smoking (p = 0.049), compared to patients with high platelet EV concentrations. Other
clinical characteristics did not differ between the subsequent patient groups. Established
predictors of LVR such as age, gender, AMI type and peak troponin I concentration were
included in the model as well [24,25].

Multivariate logistic regression models for prediction of LVR was done for each EV
subtype separately (Table S3,). The concentrations of EVs from endothelial cells and erythro-
cytes were independent predictors of LVR (OR 8.2, CI 1.3–54.2, p = 0.03 for endothelial EVs;
OR 17.8, CI 2.3–138.6, p = 0.01 for erythrocyte EVs). In contrast, EVs from platelets did not
predict LVR in multivariate analysis (OR 21.5, CI 0.8–572.1, p = 0.07). However, combining
the concentrations of EVs from endothelial cells, erythrocytes and platelets in one ROC
curve improved LVR prediction (AUC 0.87, CI 0.73–1.00, p = 0.0004; Figure 3), compared
to each EV subtype measured separately. No other clinical characteristics predicted LVR
(Table S3).
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Figure 3. Combination of the concentrations of extracellular vesicles (EVs) from endothelial cells, ery-
throcytes and platelets based on the cut-offs to predict left ventricular remodelling (LVR) after AMI.

4. Discussion

The main finding of our study is that the plasma concentrations of EVs from endothe-
lial cells (CD146+), erythrocytes (CD235a+) and platelets (CD61+) 24 h after AMI predicted
LVR at 6 months (Figure 2). Combining these 3 EV subtypes allowed to predict LVR after
AMI with 83% sensitivity and 87% specificity (Figure 3).
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Despite growing evidence demonstrating the role of EVs in cardiac and vascular
remodelling [26], to the best of our knowledge this is the first clinical study to propose a
novel strategy to predict LVR based on measuring the concentrations of EVs in plasma.
Multiple other biomarkers including NT-proBNP, cardiac troponins, aspartate and ala-
nine transaminase and C-reactive protein were evaluated for the prediction of LVR [27].
However, the combination of these biomarkers exhibited lower sensitivity and specificity
compared to the strategy which we developed in this study, based on EVs [27]. In a recent
systematic review summarizing the association between circulating biomarkers and LVR
after AMI, 112 relations between 52 different biomarkers and LVR were reported [28]. The
biomarkers most consistently associated with LVR included matrix metalloproteinase-9,
collagen peptides, and B-type natriuretic peptide [28]. However, none of these biomarkers
has been hitherto applied in a routine clinical setting to predict LVR due to their low
sensitivity and/or specificity.

There is increasing evidence that EVs mediate the complex interplay between car-
diomyocytes, fibroblasts, endothelial cells, vascular smooth muscle cells and extracellular
matrix underlying LVR [29]. Depending on the cellular origin and concentration of EVs,
EVs are either cardioprotective or promote adverse LVR [30]. In our study, decreased con-
centrations of EVs from endothelial cells (CD146+), erythrocytes (CD235a+) and platelets
(CD61+) were associated with LVR.

Communication between endothelial cells and cardiomyocytes regulates cardiomy-
ocyte function and the contractile state by providing both oxygenated blood supply and
local protective signals that promote cardiomyocyte organization and survival [31]. For
example, endothelial EVs transfer several active molecules including regulatory peptides
and growth factors involved in angiogenesis and tissue reparation, therefore triggering
epigenetic changes in the cardiomyocytes [26]. On the other hand, endothelial EVs might be
involved in myocardial and vascular damage [26]. In our study, decreased concentrations
of endothelial EVs were independent predictors of LVR, implying their cardioprotective
properties, previously showed in cell cultures and animal models [32]. However, the popu-
lation of endothelial EVs is very heterogeneous and their function is determined by the
surface molecules and content [33]. Since we did not perform any functional experiments,
we may only speculate about the role of CD146+ endothelial EVs in LVR.

Although erythrocytes are traditionally perceived as transporters of oxygen and
nutrients to the tissues, recent experimental evidence indicates that they also participate
in the nitric oxide metabolism and redox balance [34]. Myocardial reperfusion in patients
with AMI decreased the activity of erythrocyte anti-oxidant enzymes, suggesting impaired
anti-oxidant mechanisms after AMI [35]. Oxidative stress, in turn, plays an important
role in HF pathophysiology. In a murine model, overexpression of the anti-oxidative
enzyme glutathione peroxidase could attenuate post-AMI LVR and HF development [36].
Erythrocyte EV formation was showed to enable the selective removal of the oxidized
proteins from erythrocytes [37]. In a transgenic murine model, erythrocyte EVs facilitated
the cross-talk between erythrocytes and cardiomyocytes that contributed to the homeostasis
after myocardial infarction [38]. Based on our results, it could be hypothesized that
the decreased concentrations of erythrocyte EVs after AMI may indicate the disturbed
erythrocyte redox balance, which contributes to LVR. Possibly, the degree of erythrocyte
redox balance impairment might be associated with infarct area size. However, in our
multivariate logistic regression model, AMI type and peak troponin I were not independent
predictors of LVR. Hence, the factors responsible for erythrocyte redox balance and EV
release after AMI remain to be established.

Platelets are widely recognized as key players in primary hemostasis and thrombosis.
However, increasing experimental and clinical evidence shows that platelets contribute
to many other pathophysiological processes including wound healing and cardiac regen-
eration through the release of growth factors, cytokines, and EVs [39,40]. Platelet EVs
were showed to have pro-inflammatory properties in multiple studies. However, an ini-
tial, acute period of controlled inflammation may have a paradoxically beneficial role in
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cardiac recovery after AMI [41]. Whereas the direct interactions between platelet EVs
and cardiomyocytes where not yet extensively studies, platelet EVs were demonstrated to
improve endothelial cell function by decreasing endothelial permeability after thrombin
challenge [42]. Finally, platelet EVs have been implicated in the therapeutic activity, of
platelet-rich-plasma [43]. If so, EVs might be used not only to predict LVR, but also to
augment regeneration of the post-infarct myocardium [44].

We did not use the second detection technique to study EVs, which does not comply
with the MISEV 2018 (Minimal information for studies of extracellular vesicles) recommen-
dations, which is a limitation of this study [45]. However, the goal of our study required
both (i) to determine the EVs concentrations is a high-throughput way, and (ii) to determine
the EVs cellular origin. None of the other well-established methods to study including
nanoparticle tracking analysis, tunable resistive pulse sensing, Western blot or transmission
electron microscopy would allow to fulfil both of these goals [46] and therefore they were
not applied in this study. Another limitation is that we were not able to detect all EVs in
plasma, since the EV-dedicated flow cytometer applied in this study has a detection limit
of 150–200 nm for EVs [47], and most EVs have a diameter of less than 300 nm [48]. Hence,
our findings specifically refer to EVs above the detection limit of the applied flow cytometer
and cannot be extrapolated to the entire EV population. To increase the reliability of our
findings and prove that the observed effects are really due to EVs and not due to other
particles present in plasma (for examples chylomicrons), we compared the concentrations
and predictive value of total particles and non-EV particles including chylomicrons (de-
fined based on the differences in refractive index) [19] in patients with and without LVR
(Figure S2). Neither total particles nor non-EV particles differed between patient groups
and had predictive value for LVR, confirming that our findings are specifically due to EVs.
Nevertheless, since we have not ultimately proved the association between the decreased
concentrations of EVs and hard clinical end-points including recurrent hospitalizations or
death due to HF, our results remain hypothesis-generating and required confirmation in
future trials.

5. Conclusions

Decreased plasma concentrations of EVs from endothelial cells, erythrocytes and
platelets predict LVR after AMI. Since EV release EVs contributes to cellular homeostasis
by waste removal, decreased concentrations of EVs may indicate dysfunctional cardiac
homeostasis after AMI, thus promoting LVR. Understanding how the communication
between endothelial cells, erythrocytes and platelets cardiomyocytes is critical for cardiac
regeneration after AMI.
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12. Gąsecka, A.; Böing, A.N.; Filipiak, K.J.; Nieuwland, R. Platelet extracellular vesicles as biomarkers for arterial thrombosis. Platelets

2016, 28, 228–234. [CrossRef] [PubMed]
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