Hypermethylation of EFEMP1 in the Hippocampus May Be Related to the Deficit in Spatial Memory of Rat Neonates Triggered by Repeated Administration of Propofol

Zhang, Nu and Liao, Zhiyi and Wu, Pinwen and Fang, Hao and Cai, Guoping and Chen, Tao (2020) Hypermethylation of EFEMP1 in the Hippocampus May Be Related to the Deficit in Spatial Memory of Rat Neonates Triggered by Repeated Administration of Propofol. BioMed Research International, 2020. pp. 1-9. ISSN 2314-6133

[thumbnail of 8851480.pdf] Text
8851480.pdf - Published Version

Download (1MB)

Abstract

It has been confirmed that repeated application of propofol, as an intravenous and short-fast-acting anesthetic, in neonatal animals or humans may produce long-term deficits in cognitive functions. With the aim of explaining the neurotoxic effects of repeated administration of propofol on neonatal rat pups from P7 to P9 especially from an epigenetic perspective, the present study used the Morris water maze to detect cognitive deficits in spatial learning and memory, Sequenom methylation on the CpG island located in the promoter region of epidermal growth factor-containing fibulin-like extracellular matrix protein 1 (EFEMP1) to assess the methylation level of this region, and Western blot to measure the expression of EFEMP1, TIMP-3, and MMP-9. As the results have shown, repeated propofol administration on neonatal rats caused significant systemic growth retardation, impairment of spatial learning and memory, and hypermethylation of the CpG sites in the promoter region of EFEMP1 accompanied by lower expression of EFEMP1 and TIMP-3 and enhanced expression of MMP-9. These data suggest that repeated propofol administration in neonatal rats may generate hypermethylation in the promoter region of EFEMP1 which results in downregulation of the expression of EFEMP1 and tissue inhibitor of metalloproteinase-3 (TIMP-3) but upregulation of the expression of matrix metalloproteinase-9 (MMP-9), which together may affect the stability of ECM to hamper the development of the central nervous system and therefore lead to deficits in cognitive functions.

Item Type: Article
Subjects: e-Archives > Medical Science
Depositing User: Managing Editor
Date Deposited: 28 Mar 2023 12:43
Last Modified: 10 Apr 2025 12:33
URI: http://studies.sendtopublish.com/id/eprint/239

Actions (login required)

View Item
View Item